) PALADIN

BLOCKCHAIN SECURITY

Smart Contract
Security Assessment

Final Report

For Supernova
14 Feb 2026

l_u_lwww\ paladinsec.co @ info@paladinsec.co

https://paladinsec.co
mailto:info@paladinsec.co

Table of Contents

Table of Contents 2
Disclaimer 7
1 Overview 8
1.1 Summary 8
1.2 Contracts Assessed 10
1.3 Findings Summary 12
1.3.1 Global 13
1.3.2 SuperNova 13
1.3.3 MinterUpgradeable 13
1.3.4 RewardsDistributor 13
1.3.5 PairFactory 14
1.3.6 Pair 14
1.3.7 PairFees 14
1.3.8 PairGenerator 14
1.3.9 PairBootstrapper 15
1.3.10 RouterV2 15
1.3.11 RouterHelper 15
1.3.12 VotingEscrow 16
1.3.13 VotingBalancelogic 16
1.3.14 VotingDelegationLib 16
1.3.15 VoterV3 17
1.3.16 GaugeManager 17
1.3.17 GaugeFactory 17
1.3.18 GaugeV2 17
1.3.19 GaugeFactoryCL 18
1.3.20 GaugeCL 18
1.3.21 BribeFactoryV3 18
1.3.22 Bribe 18
1.3.23 CustomPoolDeployer 18
1.3.24 PermissionsRegistry 19

Page 2 of 127 Paladin Blockchain Security

https://paladinsec.co

1.3.25 TokenHandler 19

1.3.26 BlackTimelLibrary 19
1.3.27 BlackholePairAPIV2 19
1.3.28 veNFTAPI 19
1.3.29 Math 19
1.3.30 AlgebraVaultFactory 19
1.3.31 CustomPluginV1Factory and CustomPluginV2Factory 20
1.3.32 AlgebraBasePluginV3 20
1.3.33 BasePluginV3Factory 20
1.3.34 SecurityPlugin 20
1.3.35 SecurityRegistry 20

2 Findings 21
2.1 Global 21
2.1.2 Issues & Recommendations 21
2.2 SuperNova 23
2.2.1 Privileged Functions 23
2.2.2 |ssues & Recommendations 24
2.3 MinterUpgradeable 25
2.3.1 Privileged Functions 25
2.3.2 Issues & Recommendations 27
2.4 RewardsDistributor 29
2.4.1 Privileged Functions 29
2.4.2 Issues & Recommendations 30
2.5 PairFactory 31
2.5.1 Privileged Functions 31
2.5.2 Issues & Recommendations 32
2.6 Pair 34
2.6.1 Privileged Functions 35
2.6.2 Issues & Recommendations 36
2.7 PairFees 41
2.7.1 Privileged Functions 41
2.7.2 Issues & Recommendations 42
2.8 PairGenerator 43

Page 3 of 127 Paladin Blockchain Security

https://paladinsec.co

2.8.1 Privileged Functions 43

2.8.2 Issues & Recommendations 44
2.9 PairBootstrapper 45
2.9.1 Privileged Functions 45
2.9.2 Issues & Recommendations 46
2.10 RouterV2 48
2.10.1 Privileged Functions 48
2.10.2 Issues & Recommendations 49
2.11 RouterHelper 55
2.11.1 Privileged Functions 95
2.11.2 Issues & Recommendations 56
2.12 VotingEscrow 62
2.12.1 Privileged Functions 62
2.12.2 |ssues & Recommendations 64
2.13 VotingBalancelogic 69
2.13.1 Privileged Functions 69
2.13.2 Issues & Recommendations 70
2.14 VotingDelegationLib 72
2.14.1 Privileged Functions 72
2.14.2 |ssues & Recommendations 73
2.15 VoterV3 77
2.15.1 Privileged Functions 77
2.15.2 Issues & Recommendations 79
2.16 GaugeManager 82
2.16.1 Privileged Functions 82
2.16.2 Issues & Recommendations 84
2.17 GaugeFactory 93
2.17.1 Privileged Functions 93
2.17.2 Issues & Recommendations 93
2.18 GaugeV2 94
2.18.1 Privileged Functions 94
2.18.2 Issues & Recommendations 95
2.19 GaugeFactoryCL 99

Page 4 of 127 Paladin Blockchain Security

https://paladinsec.co

2.19.1 Privileged Functions 99

2.19.2 Issues & Recommendations 100
2.20 GaugeCL 101
2.20.1 Privileged Functions 101
2.20.2 Issues & Recommendations 102
2.21 BribeFactoryV3 103
2.21.1 Privileged Functions 103
2.21.2 Issues & Recommendations 104
2.22 Bribe 105
2.22.1 Privileged Functions 105
2.22.2 Issues & Recommendations 106
2.23 CustomPoolDeployer 109
2.23.1 Privileged Functions 109
2.23.2 Issues & Recommendations 110
2.24 PermissionsRegistry 111
2.24 1 Privileged Functions 111
2.24.2 |ssues & Recommendations 111
2.25 TokenHandler 112
2.25.1 Privileged Functions 112
2.25.2 |ssues & Recommendations 112
2.26 BlackTimelLibrary 113
2.26.1 Privileged Functions 113
2.26.2 |ssues & Recommendations 113
2.27 BlackholePairAPIV2 114
2.27.1 Privileged Functions 114
2.27.2 Issues & Recommendations 114
2.28 veNFTAPI 115
2.28.1 Privileged Functions 115
2.28.2 Issues & Recommendations 116
2.29 Math 117
2.29.1 Privileged Functions 117
2.29.2 |ssues & Recommendations 117
2.30 AlgebraVaultFactory 118

Page 5 of 127 Paladin Blockchain Security

https://paladinsec.co

2.30.1 Privileged Functions

2.30.2 Issues & Recommendations
2.31 CustomPluginV1Factory and CustomPluginV2Factory

2.31.1 Privileged Functions

2.31.2 Issues & Recommendations
2.32 AlgebraBasePluginV3

2.32.1 Privileged Functions

2.32.2 Issues & Recommendations
2.33 BasePluginV3Factory

2.33.1 Privileged Functions

2.33.2 Issues & Recommendations
2.34 SecurityPlugin

2.34.1 Privileged Functions

2.34.2 Issues & Recommendations
2.35 SecurityRegistry

2.35.1 Privileged Functions

2.35.2 Issues & Recommendations

Page 6 of 127

118
118
119
119
120
121
121
122
123
123
123
124
124
124
125
125
126

Paladin Blockchain Security

https://paladinsec.co

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the
integrity of and highlight any vulnerabilities or errors, intentional or unintentional, that may
be present in the codes that were provided for the scope of this audit. This audit report does
not constitute agreement, acceptance or advocation for the Project that was audited, and
users relying on this audit report should not consider this as having any merit for financial
advice in any shape, form or nature. The contracts audited do not account for any economic
developments that may be pursued by the Project in question, and that the veracity of the
findings thus presented in this report relate solely to the proficiency, competence, aptitude
and discretion of our independent auditors, who make no guarantees nor assurance that
the contracts are completely free of exploits, bugs, vulnerabilities or deprecation of tech-
nologies. Further, this audit report shall not be disclosed nor transmitted to any persons or
parties on any objective, goal or justification without due written assent, acquiescence or
approval by Paladin.

All information provided in this report does not constitute financial or investment advice,
nor should it be used to signal that any persons reading this report should invest their funds
without sufficient individual due diligence regardless of the findings presented in this report.
Information is provided ‘as is’, and Paladin is under no covenant to the completeness,
accuracy or solidity of the contracts audited. In no event will Paladin or its partners,
employees, agents or parties related to the provision of this audit report be liable to

any parties for, or lack thereof, decisions and/or actions with regards to the information
provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to cryp-
tocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate recom-
mendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the
sole responsibility of the Project team to sufficiently test and perform checks, ensuring that
the contracts are functioning as intended, specifically that the functions therein contained
within said contracts have the desired intended effects, functionalities and outcomes of the
Project team. Paladin retains the right to re-use any and all knowledge and expertise gained
during the audit process, including, but not limited to, vulnerabilities, bugs, or new attack
vectors. Paladin is therefore allowed and expected to use this knowledge in subsequent
audits and to inform any third party, who may or may not be our past or current clients,
whose projects have similar vulnerabilities. Paladin is furthermore allowed to claim bug
bounties from third-parties while doing so.

Page 7 of 127 Paladin Blockchain Security

https://paladinsec.co

1 Overview

This report has been prepared for Supernova on the Ethereum network. Paladin provides a

user-centred examination of the smart contracts to look for vulnerabilities, logic errors or

other issues from both an internal and external perspective.

1. Summary

Project Name
URL

Platform
Language

Preliminary

Resolution 1

Resolution 2

Resolution 3

Resolution 4

Page 8 of 127

Supernova

https://supernova.xyz

Ethereum
Solidity

BHSmartContracts:
https://github.com/BlackHoleDEX/SNContracts/pull/1
(https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4-
974505e4f8462caeba88d36820a9debb...f3b5db7a1f08a303776b7-
69e1d5539207e6c4511)

Algebras Changes: https://github.com/BlackHoleDEX/Algebra/pull/-
10

(the pull request portion until bc84985f65b5f74335987029e41779%a-
0b97bd497)

https://github.com/BlackHoleDEX/SNContracts/compare/f3b5db7a-
1f08a303776b769e1d5539207eb6c4511...7b8d79f34259275f98F4f-
8ba00d?271090d76e96

Algebras Changes: https://github.com/BlackHoleDEX/Algebra/pull/-
10

(the pull request portion from bc84985f65b5f74335987029e41779-
a0b97bd497 until 2050b5fa3f62e4a6d67c¢73c6247b578d5a230499)

https://github.com/BlackHoleDEX/SNContracts/compare/7b8d79f3-
4259275f98ff4f8ba00d?271090d76e96...e06bef8b26e4b888c4e0bb-
cbecdef/7a?c28dab4b

https://github.com/BlackHoleDEX/SNContracts/compare/e0é6bef8b-
96e4h888c4e0bbcbecdef7a9c28dab4b...16ebb6816844cee0d3955-
14427f5d8b93a2e8027

Paladin Blockchain Security

https://supernova.xyz
https://github.com/BlackHoleDEX/SNContracts/pull/1
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/SNContracts/compare/f3b5db7a1f08a303776b769e1d5539207e6c4511...7b8d79f34259275f98ff4f8ba00d971090d76e96
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/SNContracts/compare/7b8d79f34259275f98ff4f8ba00d971090d76e96...e06bef8b96e4b888c4e0b6cbecdef7a9c28da64b
https://github.com/BlackHoleDEX/SNContracts/compare/e06bef8b96e4b888c4e0b6cbecdef7a9c28da64b...16eb66816844cee0d395514427f5d8b93a2e8027
https://github.com/BlackHoleDEX/SNContracts/compare/16eb66816844cee0d395514427f5d8b93a2e8027...e7b493a7b2c630feba667e010add2dce89660650
https://paladinsec.co

https://github.com/BlackHoleDEX/SNContracts/compare/16ebb6681 -
6844cee0d395514427f5d8b93a2e8027...e7b493a7b2cb630febabb7-
e010add2dce89660650

Resolution 5 https://github.com/BlackHoleDEX/SNContracts/compare/e7b493a7-
b2c630febabb67e010add2dce89660650...ec20e21201ed4c5c40929-
41f1d5cb62bb6bf065626

Resolution 6 https://github.com/BlackHoleDEX/SNContracts/compare/ec?0e212-
01ed4c5c4092941f1d5cb62b6bf065626...a44e5f2a0278dd 15f2b23e-
6328a4fc32a0f7d221

Resolution 7 https://github.com/BlackHoleDEX/SNContracts/compare/a44e5f2a0-
278dd15f2b23e6328a4fc32a0f7d221...f8ff2bba3eb5caf30441dbe?-
Qcb16e38d007b444

Live Match Notes Some minor differences were spotted in the following deployed
contracts. Paladin has checked them and found no issues with the
changes.

NonFungiblePositionManager.sol: Name changed from
Algebra to Supernova

PairFactory.sol: Default fee of Basic Volatility Pools changed from
0.6% to 0.5%

VoterV3.sol: Max voting limit has changed from 20 to 30.

Page 9 of 127 Paladin Blockchain Security

https://github.com/BlackHoleDEX/SNContracts/compare/16eb66816844cee0d395514427f5d8b93a2e8027...e7b493a7b2c630feba667e010add2dce89660650
https://github.com/BlackHoleDEX/SNContracts/compare/e7b493a7b2c630feba667e010add2dce89660650...ec90e21201ed4c5c4092941f1d5c69b6bf065626
https://github.com/BlackHoleDEX/SNContracts/compare/ec90e21201ed4c5c4092941f1d5c69b6bf065626...a44e5f2a0278dd15f2b23e6328a4fc32a0f7d221
https://github.com/BlackHoleDEX/SNContracts/compare/a44e5f2a0278dd15f2b23e6328a4fc32a0f7d221...f8ff2b6a3e65caf30441dbe99c616e38d007b444
https://paladinsec.co

1.2

Name

SuperNova
MinterUpgradeable
RewardsDistributor
PairFactory

Pair

PairFees
PairGenerator
PairBootstrapper
Routerv2
RouterHelper
VotingEscrow
VotingBalancelogic

VotingDelegationLi-
b

VoterV3
GaugeManager
GaugeFactory
GaugeV2
GaugeFactoryCL
GaugeCL
BribeFactoryV3
Bribe
CustomPoolDeployer

PermissionsRegistr-
y
TokenHandler

BlackTimelLibrary
BlackholePairAPIV2
veNFTAPI

Math

AlgebraVaultFactor-
y

Page 10 of 127

Contracts Assessed

Contract

0x00da8466b296e382e5da2bf20962d0ch872060c78
Oxfe29ea1348f0990273db5e19ad521e45acda84a2
0xb3410a30af5033af822h8ea5ad3hd0a19490ea97
Ox5aef44edfc5a7edd30826¢c724ea12d7be15bdc30
0xe3BO7bc14A3c96E55f474492F1¢c1C3324cB9CcFe
0x35b842d371fb9fAAEEBBAD751016181Ae7eC59A1
Ox42a7a5bhaafh1818da3a39ce1bh97a58799d69bbh8
0x7f8f2b6d0bBaae8e95221ce90b5¢c26b128c1chb66
0xf0756789a6fh10ce566a24chf1b6570753d97ec9
0xdB8377aeab1c4c4d43bfB58895614e861720803ch
0x4c3e7640b3e3a39a2e5d030a0c1412d80fee1d44
Oxed686a5bObfedf5c97f8eabd1b7762e399319847

Ox1c7bf2532dfa34eeeaf2c3759e0ca8d87b1d8171
0x19a410046afc4203aece5fbfc7abac1a4f517ae2
0x66647a19452e98e98a9f4798831f241e33016adbo

Ox094BEf1766Eec5Db769be1B31246b60787359052#code

0x8d38206e38ec86b14530186aa36cc3b1ed8cd674
0x401348C884a872efc6144Db381A83BE8CcF250935
0xebh37f11¢573ah01358d5fefb10f5de2b4237344¢
Ox016AC7265C967581227aabFAc5cF6489D0O5FC144
0x2493h36759fh77e40ef863ca59807a9d7689%af4a
0x344eec31¢c725187cd026db73ed8805e72967c28d

Oxa1154fe44a3d5c740644b9028e4d68fd876de201

0x1fd265236e240f4f4487ae91de589ec88f7535aa
0x85dc70913e49e5ebd888adat3034e3be109e5881

Oxafc0497f052A3b5274659308DBb875271C03038d

Live Code
Match

+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH

PENDING

+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH
+/ MATCH

+/ MATCH

+/ MATCH
+/ DEPENDENCY
+/ MATCH
+/ MATCH
+/ DEPENDENCY

+/ MATCH

PENDING

Paladin Blockchain Security

https://paladinsec.co

CustomPluginV1Fact-
ory and
CustomPluginV2Fact-
ory

AlgebraBasePluginV-
3

BasePluginV3Factor-
y

SecurityPlugin

SecurityRegistry

Page 11 of 127

0xa665fc4bBC307652Cc7a546FfDC77Ef06Tb30660

Oxdbfd67d12cadb8925c1417ff3638693f2bf99b97

Oxa665fc4b0C307652Cc7a546FfDC77Ef06fb30660
0x454e62e725ad5a47931043f7e6369cfbb879bdfd

+/ MATCH

+/ MATCH

+/ MATCH

v/ MATCH

Paladin Blockchain Security

https://paladinsec.co

1.3 Findings Summary

Severity
@ Governance
@ High
Medium
Low
Informational

Total

Partially Acknowledged
Found Resolved Resolved (no change made)
3 - - 3
3 3 - -
3 3 - -
24 16 1 7
35 13 7 15
68 35 8 25

Classification of Issues

Severity

@ Governance

@ High

Medium

Low

Informational

Page 12 of 127

Description

Issues under this category are where the governance or owners of the protocol
have certain privileges that users need to be aware of, some of which can result
in the loss of user funds if the governance’s private keys are lost or if they turn
malicious, for example.

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its functions.
Issues under this classification are recommended to be fixed with utmost
urgency.

Bugs or issues that may be subject to exploit, though their impact is somewhat
limited. Issues under this classification are recommended to be fixed as soon
as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be fixed
nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level of
risk, if any.

Paladin Blockchain Security

https://paladinsec.co

1.3.1 Global

ID Severity Summary Status

01 (v) The voting and native token mechanisms are configurable, allowing ACKNOWLEDGED
the SuperNova team to control the emissions and minting system

02 INFO Lack of error messages for require statements ACKNOWLEDGED

1.8.2 SuperNova

ID Severity Summary Status

03 INFO Typographical issues + RESOLVED

1.8.3 MinterUpgradeable

ID Severity Summary Status

04 (eov) Minting logic is upgradeable, allowing the proxy admin to redefine the acknowteoceo
minting logic freely and potentially mint a large unexpected amount

of supply
05 Low The function which calculates how much of the mint should go to the = acknowienaen
veNOVA rebase is an approximation and might slightly misbehave in
edge cases
06 INFO The _initialize function lacks validation on the distribution amounts ACKNOWLEDGED
07 INFO circulating _supply can be manipulated ACKNOWLEDGED

1.3.4 RewardsDistributor

No issues found.

Page 13 of 127 Paladin Blockchain Security

https://paladinsec.co

1.8.5 PairFactory
ID Severity Summary Status
08 Low A referral cap was added but setCustomReferralFee remains +/ RESOLVED
uncapped, potentially bricking swaps when set to an excessive value
09 Low Swap fees cannot be set to zero ACKNOWLEDGED
10 INFO Typographical issues and gas optimizations
1.5.6 Pair
ID Severity Summary Status
11 (eov) swaps can be blocked by the SuperNova governance ACKNOWLEDGED
12 Low Stable pair MINIMUM _LIQUIDITY requirement is lower than Uniswap acknowieocen
V2's under very edge-case circumstances
13 Low Fee precision mechanism may cause the pair to block swaps for tokens =~ resowven
with an extremely large supply and large amount of generated fees
14 Low _getAmountOut and all functions relying on it are sometimes slightly +/ RESOLVED
inaccurate for stable pairs, causing routers to receive slightly fewer
tokens
15 Low Several functions do not have a reentrancy lock +/ RESOLVED
16 Low current() should not be used as an actual TWAP function ACKNOWLEDGED
17 INFO Typographical issues +/ RESOLVED
1.8.7 PairFees
ID Severity Summary Status
18 Fee mechanism will malfunction for fee-on-transfer tokens, causing +/ RESOLVED
there to be insufficient fees for everyone
1.5.8 PairGenerator
ID Severity Summary Status
19 INFO Typographical issues

Page 14 of 127

Paladin Blockchain Security

https://paladinsec.co

1.3.9 PairBootstrapper

ID Severity Summary Status
20 INFO Lack of deadline for V2 liquidity addition +/ RESOLVED
21 INFO Typographical issues / RESOLVED

1.3.10 RouterV/2

ID Severity Summary Status
22 Low addLiquidity frontrunning protection can be bypassed +/ RESOLVED
23 Low swapPossible check for fee-on-transfer swaps will succeed +/ RESOLVED

prematurely

24 Low The add liquidity functions are inefficient for fee on transfer tokens +/ RESOLVED
and do not properly enforce the minimum amount out for them

25 Low The swap routes provided are not properly enforced to actually
contain sensible data

26 Low The router is not very robust when malicious reentrancy hooks are +/ RESOLVED
present on tokens within the swap route

27 INFO The requested minimum amount out might not be correctly enforced acknowienaen
for special tokens

1.3.M RouterHelper

ID Severity Summary Status

28 Swap prices for stable pairs will mostly return either *0” or *1” dueto resowveo
a normalization error

29 Low getAmountsOut does not handle failures gracefully +/ RESOLVED
30 INFO _calculateStableSwapPrice is slightly vulnerable to overflow reverts +/ RESOLVED
31 INFO _swapRatio fixes have small edge cases which can cause reverts and +/ RESOLVED

small side-effects in very specific situations

32 INFO getAmountOut will still return a value even if the factory paused V2 +/ RESOLVED
swaps
33 INFO Typographical issues and gas optimizations

Page 15 of 127 Paladin Blockchain Security

https://paladinsec.co

1.312 \VotingEscrow

ID Severity Summary Status
34 HIGH NFTs are incorrectly self-delegated during NFT transfers +/ RESOLVED
35 Low Split can now leave one of the two NFTs with a zero value, an outcome resowven

which was previously impossible

36 Low ownerOf does not revert for invalid tokenld inputs ACKNOWLEDGED
37 Low Unsafe casts occur throughout the contract which reduces ACKNOWLEDGED
code-safety, especially if SUPERNOVAs supply ever increases signif-
icantly
38 INFO Several functions lack reentrancy guards ACKNOWLEDGED
39 INFO getsmNFTPastVotes seems to calculate the NFT balance twice +/ RESOLVED
40 INFO Typographical issues / RESOLVED

1.3.18 VotingBalancelLogic

ID Severity Summary Status

41 Low Block-based historical balance and total supply functions may not be v resowveo
consistent until a snapshot occurs after the provided block

42 INFO Typographical issues PARTIAL

1.814 VotingDelegationLib

ID Severity Summary Status

43 HIGH Anyone can call the internal moveTokenDelegates and moveAllDele- +/ RESOLVED
gates functions, allowing for exploiters to delegate arbitrarily to their
own wallets and fully breaking the delegation logic

44 HIGH The delegation logic is fundamentally broken in multiple ways, which +/ RESOLVED
can be abused to DoS VotingEscrow mints and transfers, prevent
delegations to any wallet and clear a wallet’s delegates at will

45 INFO Typographical issues RESOLVED

Page 16 of 127 Paladin Blockchain Security

https://paladinsec.co

1.3.15 VVoterV3

ID Severity Summary Status

46 INFO Typographical issues and gas optimizations PARTIAL

1.3.16 GaugeManager

ID Severity Summary Status

47 Low Gauge distribution amounts may still be inaccurate if a distributionis ~ + resowven
only done after a full epoch has elapsed

48 Low Manual distributeRewards requires tokens to be manually sent to +/ RESOLVED
the GaugeManager or else it will use the minter rewards which are
supposed to be distributed to gauges

49 Low Factory update functions emit incorrect events +/ RESOLVED

50 Low Rewards directly sent to Algebra’s reward system will never be ACKNOWLEDGED
distributed

51 INFO Once-per-epoch and authorization checks for distributeFees can be acknowteocen

bypassed to some extent

52 INFO Typographical issues and gas optimizations ACKNOWLEDGED

1.8.17 GaugeFactory

No issues found.

1.318 GaugeVl/2

ID Severity Summary Status
53 INFO A small amount of rewardToken dust will accumulate in the gauge +/ RESOLVED
54 INFO The GaugeV2 does not support various special ERC-20 tokens such +/ RESOLVED

as fee-on-transfer tokens

55 INFO Typographical issues and gas optimizations PARTIAL

Page 17 of 127 Paladin Blockchain Security

https://paladinsec.co

1.319 GaugeFactoryCL

ID Severity Summary Status
56 INFO Typographical issues ACKNOWLEDGED
1.3.20 GaugeCL
ID Severity Summary Status
57 Low Unstaked LP positions do not earn trading fees +/ RESOLVED
1.3.21 BribeFactoryVs
ID Severity Summary Status
58 INFO Typographical issues PARTIAL
1.8.22 Bribe
ID Severity Summary Status
59 Bribe reward claiming will erroneously send the reward to the AVM +/ RESOLVED
instead of the actual NFT owner if the NFT is owned by the AVM
60 Low Tokens with a fee on transfer are not supported as bribe rewards +/ RESOLVED
61 INFO The contract does not support a ve token with a supply larger than +/ RESOLVED
2**128
62 INFO Contract does not support reward tokens with a very high supply ACKNOWLEDGED

63 INFO Typographical issues

1.8.28 CustomPoolDeployer

No issues found.

Page 18 of 127

ACKNOWLEDGED

Paladin Blockchain Security

https://paladinsec.co

1.8.24 PermissionsRegistry

No issues found.

1.3.25 TokenHandler

No issues found.

1.3.26 BlackTimeLibrary

No issues found.

1.8.27 BlackholePairAPIV2

No issues found.

1.8.28 veNFTAPI

ID Severity Summary Status

64 INFO Typographical issues ACKNOWLEDGED

1.3.29 Math

No issues found.

1.8.30 AlgebraVaultFactory

No issues found.

Page 19 of 127 Paladin Blockchain Security

https://paladinsec.co

1.8.31 CustomPluginV/1Factory and CustomPluginV2Factory

ID Severity Summary Status

65 INFO Typographical issues ACKNOWLEDGED

1.3.32 AlgebraBasePluginV3

ID Severity Summary Status

66 INFO Fee collection cannot be paused ACKNOWLEDGED

1.3.38 BasePluginV3Factory

No issues found.

1.8.34 SecurityPlugin

No issues found.

1.8.835 SecurityRegistry

ID Severity Summary Status

67 INFO setPoolsStatus can be called by anyone if an empty pools array is ACKNOWLEDGED
provided, increasing the contract’s attack surface

68 INFO Typographical issues ACKNOWLEDGED

Page 20 of 127 Paladin Blockchain Security

https://paladinsec.co

2 Findings

2. Global

The issues in this section apply to the protocol as a whole, and may pertain to more than one

contract. Please go through the issues carefully and check them in the relevant contracts.

2.2 Issues & Recommendations

Issue #01 The voting and native token mechanisms are configurable, allowing the
SuperNova team to control the emissions and minting system

Severity @ GOVERNANCE

Description The team has taken significant steps to ensure the LP stakes into the pairs
and gauges are fully decentralized. However, they retain control over various
other properties of the system such as the minting of the native token and
the voting mechanism. Many of the peripheral contracts are upgradeable or

have extensive configurability.

It should also be noted that swaps can be paused by governance.

Recommendation Consider carefully placing all privileged roles behind a carefully-chosen and
secure multi-signature set-up of independent parties. Consider documenting

the details of the multi-signature wallet.

Resolution @ ACKNOWLEDGED

Page 21 of 127 Global Paladin Blockchain Security

https://paladinsec.co

Issue #02

Severity

Description

Recommendation

Resolution

Page 22 of 127

Lack of error messages for require statements

INFORMATIONAL

MinterUpgradeable:: 148 (example)
require (epochCount >= TAIL_START);

Throughout the codebase, many require statements lack an appropriate
error code, making it difficult for off-chain services to determine why a

transaction reverted.
MinterUpgradeable:23-24

uint public constant MAX_TEAM_RATE
uint256 public constant TAIL_START

500;
67;

)

Throughout the contract, uint and uint256 are used interchangeably. It is
cleaner to stick to one of the two consistently.

Consider including distinct error messages for all the require statements in

the codebase.

@ ACKNOWLEDGED

Global Paladin Blockchain Security

https://paladinsec.co

2.2 SuperlNova

The SuperNova token is the native token of the SuperNova system and is minted every
epoch.

The contract is configured to mint an initial amount of 560, 600, 800 tokens. Additional
tokens can be minted by the deployer, and since the subsequent minter contract that

receives the minter role is upgradeable, the minting schedule will remain adjustable by the

team through an upgrade.

2.2.1 Privileged Functions

« setMinter [minter]
« initialMint [minter, callable once]

 mint [minter]

Page 23 of 127 SuperNova Paladin Blockchain Security

https://paladinsec.co

2.2.2 Issues & Recommendations

Issue #03 Typographical issues
Sevel'ity INFORMATIONAL
Description Line 6

contract Black is IBlack {

The contract and interface name could be considered misleading as this is

now the SuperNova token.
Recommendation Consider fixing the typographical issues.

Resolution @ RESOLVED

This is resolved throughout the codebase.

Page 24 of 127 SuperNova Paladin Blockchain Security

https://paladinsec.co

2.5 MinterUpgradeable

MinterUpgradeable is the only contract with the minter role on the SuperNova token,
meaning it is supposed to be the only place where SuperNova tokens get minted.

Every epoch, it expects that someone calls update_period to calculate the emission rate
for that epoch and distribute it. This function splits the emissions over three destinations:

* Rebase to veNOVA stakers

» Gauge emissions

» Team share (5%)

The proportion of the emissions going to veNOVA holders is inversely proportional to the

number of veNOVA stakers:
veNOVAAllocation = (100% - stakedInVeNOVA%)*2/2

This means that the rebase quickly diminishes as more people stake in veNOVA, but
becomes a very strong incentive for staking if not that many people are staking into veNOVA.
This effect is compounded by the fact that the actual allocation to veNOVA will then be

split over all veNOVA stakers, meaning that when there are few stakers, the allocation will
not only be very high, it will also be shared over less stakers. And when there are many

stakers, the allocation will not only be very small, it will also be shared over all of these

stakers. At the time of this audit, this allocation is quite small due to the very high number of

permanently staked veNOVA (the “supermassive permalock”), meaning nearly all emissions
are forwarded to gauge emissions.

The gauge emissions are then transferred to the gauge manager which is responsible for

distributing them over the various gauges according to the vote distribution.

As the contract is upgradeable, all of its behavior is fully adjustable by the team which
means that any minting restrictions such as the maximum team share are only partially
binding as the team can upgrade the contract with new business logic. Variables such as
the MAX_TEAM_RATE are thus not very meaningful.

2.3.1 Privileged Functions

Page 25 of 127 MinterUpgradeable Paladin Blockchain Security

https://paladinsec.co

« setTeam [team]

- acceptTeam [pending team]

+ setGaugeManager [team]

+ setTeamRate [team]

« setRewardDistributor [team]

« transferOwnership [owner, unused]

* renounceOwnership [owner, unused]

Page 26 of 127 MinterUpgradeable Paladin Blockchain Security

https://paladinsec.co

2.3.2 Issues & Recommendations

Issue #04

Severity

Description

Recommendation

Resolution

Issue #05

Severity

Description

Recommendation

Resolution

Page 27 of 127

Minting logic is upgradeable, allowing the proxy admin to redefine the
minting logic freely and potentially mint a large unexpected amount of supply

@ GOVERNANCE

Even though the minter describes a clear supply schedule, the minter is up-
gradeable. If a malicious actor ever upgrades it with a malicious implementa-

tion, they can potentially mint a very large amount of NOVA and subsequently
sell it.

Consider adding safeguards to NOVA to prevent it from suddenly minting very
large amounts of supply. Consider safeguarding the proxy behind a secure

multisig composed of trusted, independent parties.

@ ACKNOWLEDGED

The function which calculates how much of the mint should go to the veNOVA
rebase is an approximation and might slightly misbehave in edge cases

LOW SEVERITY

The portion of the weekly mint going to the veNOVA holders is based on the
following equation:

unstakedNOVA%2/2

This means that if no NOVA is staked within the voting escrow contract, 50%
of all emissions go to veNOVA rebases. This is not very sensible as no one

would be able to claim it. If all NOVA are staked, 0% would go to rebases. If
half are staked, 12.5% goes to rebases.

There are a few problems with the implementation of this math — there is no

exception for whenthe _veTotaliszero, asinthis case the rebaseAmount
should be zero.

Next, _veTotal is based on a different epoch as its proportion to the
blackSupply, whichis the total NOVA tokens. This means that due to timing
mismatches, unstakedNOVA in the above equation could theoretically be
negative. This is extremely unlikely in practice but if it happened, calcu-
late_rebase and all minting would be paused until the underflow stops
occuring.

Consider documenting this, and making sure that there is always enough
liquidity staked and unstaked in the voting escrow contract to ensure these

edge cases cannot occur.

@ ACKNOWLEDGED

MinterUpgradeable Paladin Blockchain Security

https://paladinsec.co

Issue #06

Severity

Description

Recommendation

Resolution

Issue #07

Severity

Description

Recommendation

Resolution

Page 28 of 127

The _initialize function lacks validation on the distribution amounts

INFORMATIONAL

_initializeisthe secondary initializer called at a later time from the initial

one. It mints and distributes veNOVA tokens to a set of claimants.

This distribution logic allows the caller to specify the number of NOVA to mint
to the minter, but there is no validation that this number is equal to the sum

of claims minted.

Underscoring function names is typically only done for internal functions. On

a side-note, the NOVA approval to _ve can also be reset after creating all the
locks, to give further confidence to users seeing an open approval from the

minter.

Consider whether over-minting is desired, such as if the team wishes to leave
a remainder within the minter. If not, consider validating that the minted

amount is equal to the sum of claims.

@ ACKNOWLEDGED

circulating_supply can be manipulated

INFORMATIONAL

MinterUpgradeable exposesa circulating_supply view function.
This function is not used significantly.

If a future contract starts relying on it, we want to caution such usage as the

value it supplies can be manipulated. For example, it subtracts any NOVA
staked into the voting escrow contract from the supply. But such stakes

can be made with as short as a single second duration. This means that

someone might borrow NOVA, stake it for 1 second, and significantly decrease

circulating_supply.
Consider either removing this function or documenting this.

@ ACKNOWLEDGED

MinterUpgradeable Paladin Blockchain Security

https://paladinsec.co

2.4 RewardsDistributor

The RewardsDistributor is a small contract responsible for distributing the weekly
rebase to voting escrow stakers. Every week, a small portion of the weekly emissions is
distributed to voting escrow NFT holders directly, as described in the MinterUpgrade-

able contract description. This distribution can then be claimed by voting escrow stakers
and it will be compounded into their stake, essentially rebasing the stake amount to a higher

value. If the stake has expired, the rebase can be claimed as native tokens.

Rebases are assigned to epochs whenever checkpoint_token gets called with new
rewards. This is done by MinterUpgradeable, but can include any tokens donated to the
contract, including ones sent there directly. It should be noted that the frequency of check -
point_token being called will affect which epoch rewards are assigned to. Assuming a

schedule where the contract receives all rewards during epoch 1 and checkpoint_token
is only called in epoch 3, all these rewards will be equally divided over the three epochs,

even though they are for epoch 1. This is by design.

As always, the staking contract is not very robust against the case where there are no stakers.
In that case, rewards may end up being unclaimed and stuck until withdrawn. This is by

design.

It should be noted that the RewardsDistributor uses the historical balances of
tokenIds to distribute, but distributes to the current owner. This is particularly important
if a token is removed through a merge. In that case, the owner of the old tokenId is wiped

and the rewards for that id can never be claimed. A similar issue occurs when claiming after

the tokenId was withdrawn. Users should keep this in mind and ensure they claim their
rebases before performing such actions.

It should be noted that anyone can claim the rebase for an NFT, not just the token owner or

an approved address. This cannot be disabled.

This contract was audited under the assumption that the token implementation is the

SuperNova token we audited, and that the VotingEscrow implementation is the one we
audited as well. This is because we assume no reentrancy in claim, but with non-standard

tokens and implementations that could be possible. Exercise caution if you are using a

forked protocol.

2.4.1 Privileged Functions

Page 29 of 127 RewardsDistributor Paladin Blockchain Security

https://paladinsec.co

* setDepositor
+ setOwner

 withdrawERC20

2.4.2 Issues & Recommendations

No issues found.

Page 30 of 127 RewardsDistributor Paladin Blockchain Security

https://paladinsec.co

2.5 PairFactory

PairFactory is the entry point for both basic and stable V2 pair deployment. Pairs can
only be created by authorized accounts. The factory is also responsible for configuring

various fee-related values for the pairs, such as their fee rate and the referral fee recipient.

Upgrading the PairFactory with an improperly configured implementation can block
swaps on the pair.

2.5.1 Privileged Functions

+ setPause [owner]

« setFeeManager [feeManager]

« acceptFeeManager [pendingFeeManager]
+ setDibs [feeManager]

+ setReferralFee [feeManager]

+ setFee [feeManager]

+ setCustomFees [feeManager]

« setCustomReferralFee [feeManager]

« createPair [authorizedAccounts or feeManager]
« addAuthorizedAccount [feeManager]

« removeAuthorizedAccount [feeManager]
« transferOwnership [owner]

* renounceOwnership [owner]

Page 31 of 127 PairFactory Paladin Blockchain Security

https://paladinsec.co

2.5.2 Issues & Recommendations

Issue #08

Severity

Description

Recommendation

Resolution

Issue #09

Severity

Description

Recommendation

Resolution

Page 32 of 127

A referral cap was added but setCustomReferralFee remains uncapped,
potentially bricking swaps when set to an excessive value

LOW SEVERITY

The referral fee was capped to a fixed value, reducing the risk of accidentally
setting it to an excessively high value and bricking swaps until it is lowered

again.

However, this safeguard was not implemented within the setCustomRefe-

rralFee function.
Consider adding it there as well.

& RESOLVED

Swap fees cannot be set to zero

LOW SEVERITY

The swap fees can never be configured to zero within the system, as this value
is treated as the “unset” state for fee overrides and is prohibited to be the
default fee.

Consider whether this is an issue. If not, this issue will be resolved on that

note. If so, consider adjusting both the Pair and PairFactory code to
allow for zero fees, and use, for example, a boolean flag for the fee override

to indicate whether it is set or not.

@ ACKNOWLEDGED

PairFactory Paladin Blockchain Security

https://paladinsec.co

Issue #10

Severity

Description

Recommendation

Resolution

Page 33 of 127

Typographical issues and gas optimizations

INFORMATIONAL

Line 5

import '../interfaces/IPair.sol';
This import is unused.

Line 17

uint256 public MAX_REFERRAL_FEE;

This variable seems to be a misnomer, as it represents the default, and within
the SuperNova system, the recipient of this fee is set to a multi-signature
wallet and not a referral address. However, the fee seems to be set to zero

within the SuperNova system.Line 78-79

require(msg.sender == pendingFeeManager, "NA");
feeManager = pendingFeeManager;

It is slightly more idiomatic to also check that msg . sender is not the zero
address here, since pendingFeeManager is zero by default. Although it
is practically impossible for that to occur, it is cleaner to reset the pend-

ingFeeManager tothe default zero address after the feeManager gets set.

Lines 123-124 and 130-131

if (customFees[_pairAddress] > 0) {
return customFees[_pairAddress];

if (customReferralFees[_pairAddress] > 0) {
return customReferralFees[_pairAddress];

These sections of code are inefficient with regards to gas usage as the

functions access the same storage slot twice.

Most of the governance functions lack events.

Consider fixing the typographical issues and gas optimizations.

@ PARTIALLY RESOLVED

PairFactory Paladin Blockchain Security

https://paladinsec.co

2.6 Pair

Pair is one of the main liquidity pool contracts for the system. It defines the swap and LP
logic for both the basic and the stable pools and is based on the following chain of forks:

It is a direct fork from Thena, which forked indirectly from Solidly, which is based on the
Uniswap V2 Pair. Unlike the Uniswap V2 pair, Solidly and thus this contract also support a
custom curve—the "stable" curve which uses x3®y + y3x >= k instead of the traditional

x*y >= k swap invariant.

Another difference compared to Uniswap V2 is that fees are sent to a separate PairFees
contract instead of being compounded, which reduces the contract's attack surface.

The fee logic has also been made more elaborate, allowing fees to be split among several
recipients: the referral fee (currently just a multisig owned by SuperNova, but set to zero) and
the fee to liquidity providers. This means that unstaked LP positions earn 100% of the swap
fees, unlike most other protocols where a portion of this swap fee returns to the protocol.

This is because most commonly the Pair LP will be staked inside a GaugeV2 contract, which
has its own custom fee processing logic where the fee goes to the voters of that gauge.

A side effect of the fee logic is that small rounding errors will cause fee rewards to be
permanently stuck in the fee contract. Additionally, there is a risk that the pair contract
itself accumulates fees that will forever remain unclaimable, as the burn function expects
LP value to be stored in the pair itself. If this temporary LP value accumulates any swap
fees, those fees will forever be unclaimable. This is not raised as an issue as it is inherent to
the design, and the expected use case is for no swaps to occur between sending liquidity to
an LP and burning said liquidity.

Pair is meant to be solely interacted with through a peripheral contract like a router,

which defines all safeguards to avoid lost tokens. Several components of the Pair, such
as its fee mechanism, result in small rounding errors that will disfavor protocol users. Some

fee tokens may become stuck in the fee contract, and users might overpay for liquidity
addition/removal/swaps depending on the router implementation. This is mostly inherent
to Uniswap V2. It should also be noted that Pair is to be deployed by the PairFactory

through the PairGenerator, and that the factory should perform important checks on
the tokens such as order verification.

Pair is not compatible with special tokens, most notably tokens with a fee on transfer, as
its fee mechanism does not account for the fees. However, the client has indicated that they

will coordinate with teams of such tokens to disable the fee for the SuperNova contracts,

allowing them to be used. Additionally, tokens such as rebasing tokens will always cause

Page 34 of 127 Pair Paladin Blockchain Security

https://paladinsec.co

issues. Finally, it is not compatible with tokens with an extremely large number of decimals

or extremely large supplies (risk of _T overflowing).

Finally, the Pair defines a very rudimentary oracle, though we recommend not overly relying
on it as it has the same inherent shortcomings as most on-chain oracles where issues like
availability problems due to chain outages can cause it to be very brittle. It should also be
noted that many of the oracle functions do not have parameter validation such as checks
that window sizes are non-zero, etc. We will not raise this as an explicitissue in this audit as it
is meant to save gas, and the minimum parameterizations (e.g., window size 1) are often still

insufficient. However, we still recommend the client document this in their documentation.

2.6.1 Privileged Functions

None.

Page 35 of 127 Pair Paladin Blockchain Security

https://paladinsec.co

2.6.2 Issues & Recommendations

Issue #11

Severity

Description

Recommendation

Resolution

Issue #12

Severity

Description

Recommendation

Resolution

Page 36 of 127

swaps can be blocked by the SuperNova governance

@ GOVERNANCE

The swap functions can be blocked or paused by the SuperNova team. This
should be taken into consideration by teams building contracts on top of

SuperNova.

The swap function can be blocked via multiple methods: pausing the factory,
upgrading the factory to revert on isPaused(), dibs(), getRefer-
ralFee() and stakingNFTFee().

Consider documenting this carefully.

@ ACKNOWLEDGED

Stable pair MINIMUM_LIQUIDITY requirement is lower than Uniswap V2's
under very edge-case circumstances

LOW SEVERITY

The team has significantly strengthened the minimum liquidity that gets
locked for stable pairs. This is a positive change as it avoids a common issue

present with many Solidly forks.

However, under very specific token parameters, the requirement now
appears to be lower than the original Uniswap one -- most notably when the

decimals of the individual tokens are very low, e.g. less than or equal to four.

The _k check on the minimum liquidity still appears to be sufficient
requirement to avoid any issues, but given that a requirement from the

original Uniswap protocol is loosened, we still want to recommend that it is

at least always as strong as Uniswap’s.

Consider updating the code-section to something like:
uint minimumlLiquidity;
if(stable) {
minimumLiquidity = Math.max(MINIMUM_LIQUIDITY, _getMi-
nimumLiquidity(_amount®, _amount1));
} else {
minimumLiquidity = MINIMUM_LIQUIDITY;

@ ACKNOWLEDGED

Pair Paladin Blockchain Security

https://paladinsec.co

Issue #13

Severity

Description

Recommendation

Resolution

Page 37 of 127

Fee precision mechanism may cause the pair to block swaps for tokens with
an extremely large supply and large amount of generated fees

LOW SEVERITY

Line 180-182 (and 205-208)

uint256 _ratio = amount * 1e18 / totalSupply;
if (_ratio > 0) {
index® += _ratio;

During Pair swaps, the fees are added to an index for eventual distribution.

The math for this calculation may be prone to overflow in very niche cases as
amount is a quantity of individual tokens while totalSupply is a quantity

of the LP supply. In theory, index® could thus become excessively large to

eventually overflow and deny swaps on pairs.

This issue is rated as low as Uniswap pairs are not supposed to work well with
tokens with a large supply anyways. However, this issue is included as it can

be avoided with mitigation code.

Consider whether such tokens or pairs will ever be added. If so, consider
mitigating this by performing the addition in an overflow-safe manner, where
the fee is set to zero or (for example) sent to an admin instead if it is about to

overflow.

This issue will be resolved on the note that such tokens are not in the scope

of the protocol.

& RESOLVED

The client will not support such tokens.

Pair Paladin Blockchain Security

https://paladinsec.co

Issue #14

Severity

Description

Recommendation

Resolution

Page 38 of 127

_getAmountOut and all functions relying on it are sometimes slightly
inaccurate for stable pairs, causing routers to receive slightly fewer tokens

LOW SEVERITY

Lines 441-442

function _get_y(uint x0, uint xy, uint y) internal pure
returns (uint) {
for (uint i = 0; i < 255; i++) {

The _getAmountOut function relies on a binary search algorithm to invert

the _k function for stable pairs. This binary search is capped at 255 iterations
to prioritize liveness over accuracy. Under specific inputs, as can be achieved

through fuzzing, the 255 iterations can be exhausted and _getAmountOut
will be slightly inaccurate.

Routers and other periphery contracts relying on this function may receive

slightly fewer tokens in this case compared to what they theoretically could

have withdrawn from the Pair.

It should also be noted that this issue might always be present to a lesser
extent due to rounding in functions such as _f.

Consider whether this is a problem. It seems that using a capped loop instead
of a while loop was an explicit decision to prioritise liveness over absolute
correctness. If that was indeed the goal, and it is acceptable that the router
may very infrequently give back slightly fewer tokens, then this issue can be

resolved on that note.

& RESOLVED

Pair Paladin Blockchain Security

https://paladinsec.co

Issue #15

Severity

Description

Recommendation

Resolution

Page 39 of 127

Several functions do not have a reentrancy lock

LOW SEVERITY

The skim, sync, mint, burn and swap functions all have the lock
modifier to protect them from reentrancy. However, claimFees, claim-
StakingFees, transfer and transferFrom function do not have this
lock, allowing for reentrancy not only between these functions, but also from

functions such as burn into for example transferFrom.

This was initially a concern for us as these unmarked functions all call

_updateFor, which is an important fee-accrual function, and is thus tied
to swaps, mints and burns. However, after running tests, we could not find a

way to abuse this through reentrancy.

We still raise this as a concern as we do not recommend violating the c-
hecks-effects-interactions pattern in a codebase. That being said, we do

understand that certain contracts may want to re-enter into functions such as

claimFees or transfer during a swap and adding guards would prevent
this.

Consider this trade-off between availability of these functions within the
reentrancy hook and more formal security. If more formal security is desired,

consider adding reentrancy guards to these functions.

& RESOLVED

The client has checked that this is fine for them.

Pair Paladin Blockchain Security

https://paladinsec.co

Issue #16

Severity

Description

Recommendation

Resolution

Issue #17

Severity

Description

Recommendation

Resolution

Page 40 of 127

current() should not be used as an actual TWAP function

LOW SEVERITY

Line 284-285

function current(address tokenIn, uint amountIn) external
view returns (uint amountOut) {
Observation memory _observation = lastObservation();

The Pair exposes a current function which might be confused by other

contract developers as exposing a TWAP. However, current can be easily
manipulated as it simplly uses the current accumulated price since the last

snapshot, which can be extremely recent.

Consider documenting this with a comment to avoid confusion amongst

developers using this function.

@ ACKNOWLEDGED

Typographical issues

INFORMATIONAL

Line 183

_safeTransfer(token1, _dibs, _referralFee); // transfer
the fees out to PairFees

We did not notice this typographical issue in the original audit. The fees are

not transferred to the PairFees contract here.

Lines 544-545

address recoveredAddress = ECDSA.recover(digest, v, r,
s);

require(recoveredAddress != address(0) && recoveredAd-
dress == owner, 'ISIG');

The OpenZeppelin ECDSA . recover function already checks that the
resulting address is non-zero; the first portion of the subsequent requirement

is thus redundant.

Consider fixing the typographical issues.

& RESOLVED

Pair Paladin Blockchain Security

https://paladinsec.co

2.7 PairFees

PairFees is a sub-contract of the Pair contract. It is responsible for the trading fees that
are meant to be distributed to liquidity providers.

During any swap, the fee amount eligible for distributionis sentinto PairFees by the Pair.

When liquidity providers call claimFees on the Pair, this function will calculate the
exact claimable amount for the user, mark that amount as claimed, and subsequently call

claimFeesFor onits PairFees instance, thus providing the user (“liquidity provider”)
who called the function, the amounts to claim. These amounts are then transferred from

the PairFees contract to the user.

PairFees gets deployed during the creation of Pair and is fully managed by said Pair.
Each Pair thus hasits own PairFees child.

As with most contracts within this codebase, PairFees strictly does not support negative
rebasing tokens (where the balances can decrease naturally through rebases) and positive

rebases will be permanently stuck within the contract.

2.7. Privileged Functions

None.

Page 41 of 127 PairFees Paladin Blockchain Security

https://paladinsec.co

2.7.2 Issues & Recommendations

Issue #18

Severity

Description

Recommendation

Resolution

Page 42 of 127

Fee mechanism will malfunction for fee-on-transfer tokens, causing there to
be insufficient fees for everyone

When fees are claimed, the pair will transfer them to this PairFees contract.
This transfer will however cause a smaller amount of tokens to arrive with

a popular type of token called a “fee-on-transfer” token. These tokens are
known to incur a transfer fee whenever they are transferred, which is typically

either burned or sent to a fee address.

However, the Pair indiscriminately withdraws the fees as if they were all fully

received by PairFees. If the fee is 10% for example, a user who generated
$10 in fees will be able to fully claim them, even though the contract only

has $9 in fees. If no other funds are present in PairFees, the user will not
be able to withdraw their fees due to insufficient funds in the contract. Even

if there are still funds, there will always be users who cannot withdraw their
fees due to the 10% shortfall that will inevitably be taken from other users’

share of the fees.

This issue is rated as medium instead of high as fee-on-transfer tokens are

only a subset of all tokens. However, Ethereum still has many of them.

Consider using a before-after pattern, or strictly documenting the fact that

fee-on-transfer tokens are not supported for tokens where the PairFees
contract is not whitelisted.

& RESOLVED
The client has indicated they will coordinate with the teams of these
tokens to ensure that the SuperNova tokens are whitelisted from the

fee, before adding these tokens.

PairFees Paladin Blockchain Security

https://paladinsec.co

2.8 PairGenerator

PairGenerator deploys new Pair instances for both basic and stable pools on the
platform. The contract contains the code for a Pair and uses a factory pattern to deploy
new instances whenever the createPair function is called, which is callable by anyone.

2.8.1 Privileged Functions

« setFactory [factory]

Page 43 of 127 PairGenerator Paladin Blockchain Security

https://paladinsec.co

2.8.2 Issues & Recommendations

Issue #19 Typographical issues
Severity @ INFORMATIONAL
Description Line 26

function setFactory(address _factory) external
onlyFactory {

PairFactory does not provide functionality to call this function, though it
appears upgradeable so this could be added down the line.

Lines 11-13

address internal _temp©;
address internal _temp1;
bool internal _temp;

The naming of these variables is rather ambiguous. Consider renaming them

to tempToken@, tempToken1 and tempStable.

The new setFactory function lacks an event.
Recommendation Consider fixing the typographical issues.

Resolution @ PARTIALLY RESOLVED

Page 44 of 127 PairGenerator Paladin Blockchain Security

https://paladinsec.co

2.9 PairBootstrapper

The PairBootstrapper is a simple utility contract added to safeguard the pair creation
and initial mint for both the V2 and CL pairs further. It is meant to be used for simple tokens

(eg. no reentrancy tokens) as reentrancy tokens could circumvent or affect the safeguards.

As the whole system is designed for simple tokens we have not re-iterated this as an issue.

For V2 pairs, it explicitly confirms that the minimum amount was burned and if not- it burns
it. It furthermore does a more robust mint as the router-based mints are more brittle. That
being said- the V2 mint lacks checks on the liquidity minted, but given that the pair must

be created in the same transaction, this should not be a problem as long as no reentrancy

occurs. Worst case, the mint occurs at a different price due to someone donating tokens to
the address beforehand, in which case the creator gets these tokens and makes a profit.

If reentrancy is possible, the mint can be affected and someone may frontrun it with a
malicious price, to extract most of the value. Reentrancy guards would not protect against

this so this function should simply not be used for such tokens.

For V3 pairs, it sets up an initial full range position and sends it to the provided recipient.

It should be noted that the caller needs to carefully consider initialSqrtPriceX96, as
it’s independent of the provided token order.

2.9.1 Privileged Functions

« createBasicPairAndAddLiquidity [owner or authorized account]
« createCLPoolAndAddFullRange [owner or authorized account]

« addAuthorizedAccount [owner]

* removeAuthorizedAccount [owner]

« transferOwnership [owner]

« renounceOwnership [owner]

Page 45 of 127 PairBootstrapper Paladin Blockchain Security

https://paladinsec.co

2.9.2 Issues & Recommendations

Issue #20

Severity

Description

Recommendation

Resolution

Issue #21

Severity

Description

Page 46 of 127

Lack of deadline for V2 liquidity addition

@ INFORMATIONAL

Even though the createCLPoolAndAddFullRange function has a

deadline parameter, the createBasicPairAndAddLiquidity function
lacks this parameter. This means that this functionality can’t be used for the

V2 liquidity addition.

Consider adding the deadline parameter to the V2 function as well, if it’s

considered a useful feature.

& RESOLVED

Typographical issues

@ INFORMATIONAL

Line 75

event BasicPairCreatedAndSeeded(address indexed pair,

address indexed tokenA, address indexed tokenB, bool

stable, uint liquidity, uint amountAUsed, uint amount-
BUsed, address to);

The token related parameters should be called 0 and 1 instead.
Line 128-129

amountA = tokensSwapped ? p.amountBDesired : p.amountADe-
sired;

amountB = tokensSwapped ? p.amountADesired : p.amountB-
Desired;

These variable names (amountA and amountB) are misnomers and should
refer 0 and 1 instead.

Line 218

CreateCLParams memory p = p_;
This copy instruction appears unnecessary.
Lines 238 and 241

TERC20(token®) .transfer(msg.sender, IERC20(token®).bala-
nceOf (address(this)));

PairBootstrapper Paladin Blockchain Security

https://paladinsec.co

IERC20(token1) .transfer(msg.sender, IERC20(token1).bala-
nceOf (address(this)));

These lines wrongly don’t use safetransfer, which can cause issues for specific
non-compliant tokens.

Recommendation Consider fixing the typographical issues.

Resolution @ RESOLVED

Page 47 of 127 PairBootstrapper Paladin Blockchain Security

https://paladinsec.co

2./10 RouterV2

The RouterV2 is the entry point for users to swap, add liquidity and remove liquidity
from the DEX pairs. It integrates the contrentrated liquidity, basic, and stable pools all

into a single interface, though certain functions only support basic or stable pools. For
the concentrated liquidity pools, users will sometimes have to directly interact with the

Algebra-based router.

RouterV2 is re-configurable: the router for the concentrated liquidity and the address of
WETH, which calculates all swap amounts and is indirectly used to validate the minimum

amount that users receive, can all be changed. This can create risk for users, but fortunately
there is no risk for open approvals to be drained to our knowledge, as transfers from the

user appear to always require a message to be sent by said user.

Tokens sent by accident to the RouterV2 can and will be taken out by searchers almost
immediately, as the router provides mechanisms that allow anyone to extract approved

token balances.

2.10.1 Privileged Functions

* setSwapRouter

+ setAlgebraFactory
+ setAlgebraPoolAPI
* setWeTH

* transferOwnership

* renounceOwnership

Page 48 of 127 RouterV2 Paladin Blockchain Security

https://paladinsec.co

2.10.2 Issues & Recommendations

Issue #22

Severity

Description

Recommendation

Resolution

Page 49 of 127

addLiquidity frontrunning protection can be bypassed

LOW SEVERITY

Basic reentrancy protection has been added to addLiquidity, whichis
intended to prevent reentrancy during token transfers that callmint or skim

on the pair to extract the just-added tokens. The minAmountOut safeguards
of the router were insufficient as they are performed on a simulation of the

liquidity addition rather than on the actual result. This is a common issue with
all Uniswap V2 routers that is unlikely to materialize as very few legitimate

tokens allow for such reentrancy, but it is theoretically possible.

The resolution that was introduced was to check that no liquidity was added

or removed after the token transfers, as an attempt to check that mint was
not called during that period. However, this is insufficient as skim could still
be called alongside with a combination of mint and burn, which would leave

the totalSupply unchanged. The check is therefore insufficient.

Consider either acknowledging the issue as most Uniswap V2 routers do, or

fetching the totalSupply and reserves after the mint is done, and doing
the minAmountOut checks on the actual reserve values of the 1iquidity

returned by the mint call. This should guarantee that the liquidity minted to
the user is valued at at least what the user inputs, but adds a few extra calls

and lines of code, increasing the gas cost and complexity of the function.

& RESOLVED
The protection has now been removed as it was not adding security.
Note that no new protection was implemented. Keep this in mind and

be extremely careful with any special tokens.

RouterV2 Paladin Blockchain Security

https://paladinsec.co

Issue #23

Severity

Description

Recommendation

Resolution

Page 50 of 127

swapPossible check for fee-on-transfer swaps will succeed prematurely

LOW SEVERITY

Within the SwapRouter, adjustments have been made to include any tokens
accidentally sent to the pair without syncing in swap calculations. This is

beneficial and improves the accuracy of the math.

However, within the fee-on-transfer swaps within the RouterV2 contract,
tokens are first sent to the pair before this math is called. This causes the math

to double count as the balance differential will be included as part of the input
amount. This token differential is also explicitly provided to the _swapRatio
within getAmountOut, guaranteeing that it will be counted exactly twice.

This will cause the function to prematurely indicate that swapPossible is

true even when it is not.

Consider refactoring the math within _swapRatio to support a zero
amountIn. Consider providing an amountIn of zero into getAmountOut.
Note that this will require a refactor in the SwapHelper as it will still need to
provide the correct amount in into pair.getAmountOut.

& RESOLVED

RouterV2 Paladin Blockchain Security

https://paladinsec.co

Issue #24 The add liquidity functions are inefficient for fee on transfer tokens and do
not properly enforce the minimum amount out for them

Severity LOW SEVERITY

Description Although the addLiquidity functions are designed to support
fee-on-transfer tokens, they do not interact ideally with them.

First, the minimum token amounts for fee-on-transfer tokens are not

properly accounted for during the liquidity addition process.

Second, the pair contract receives an imbalanced amount of tokens because
fewer tokens arrive than were initially sent. This discrepancy causes the
user to overpay when adding liquidity, and the excess tokens are effectively
donated to the pair. As a result, the pair’s liquidity increases slightly, while

the token’s price within the pool correspondingly decreases.

Additionally, the removelLiquidityETHSupportingFeeOnTransferT-
okens function is inefficient. It can trigger an unnecessary additional transfer
fee because the token is first routed back into the router before being sent to

the user.

Recommendation Consider displaying a warning on the frontend regarding this issue. If an
efficient method is desired, a fallback function can be implemented that
first transfers the fee-on-transfer token and subsequently calculates the
appropriate amount of the secondary token to send. However, this approach
is cumbersome to implement and still does not support pairs containing two

fee-on-transfer tokens.

Additionally, consider raising a warning when the ETH liquidity removal

function is invoked, recommending that users utilize the WETH function
instead.

Resolution @' RESOLVED
The client has indicated they will coordinate with the teams of these
tokens to ensure that the SuperNova tokens are whitelisted from the

fee, before adding these tokens.

Page 51 of 127 RouterV2 Paladin Blockchain Security

https://paladinsec.co

Issue #25 The swap routes provided are not properly enforced to actually contain
sensible data

Severity LOW SEVERITY

Description The swap functions require the user to provide a swap route, which represents

a chain of pairs through which the swap will be executed.

This swap data is quite verbose, and much of it is not validated to ensure
sensibility. For example, there is no validation that the destination token of
one hop in the route matches the source token for the next hop. There is
also no validation that the provided pair contract actually corresponds to the
two tokens being swapped. In many cases, incorrect data can be provided,
yet the function will still execute successfully because it only utilizes specific

elements from the route.

Similar to the issue described above, this behavior can mislead users who are
inspecting their transaction data.

Recommendation Consider validating all values of the route.

Resolution

Page 52 of 127 RouterV2 Paladin Blockchain Security

https://paladinsec.co

Issue #26

Severity

Description

Recommendation

Page 53 of 127

The router is not very robust when malicious reentrancy hooks are present
on tokens within the swap route

LOW SEVERITY

If any token within the swap route permits arbitrary code execution,
it can potentially weaken the security of certain router functions. For
example, the removelLiquidityETHSupportingFeeOnTransferToke-

ns functions could be exploited to drain their token balance by performing
a reentrancy attack that re-invokes the function before the token transfer

is completed. Although this scenario is theoretically possible, the likelihood
is very low because such reentrancy would require the involvement of a
malicious token, which legitimate users would typically avoid pairing with in

a liquidity pool.

Similarly, the addLiquidity function could, in theory, be frontrun by an
attacker who triggers the mint operation in advance. However, this is also

considered highly unlikely.

In addition, the amountOutMin parameter can be effectively bypassed
in swap functions that support fee-on-transfer tokens under specific

conditions. For example, if a user has an active CowSwap order involving
the same receipt token, a reentrancy on any token in the route could trigger
the CowSwap order. Since such an order might execute at minimal cost, the
tokens could be sent to the user nearly free of charge if the order price is
close to market value. This would mislead the before-and-after validation
pattern, making it appear as though the swap generated tokens for the user

and causing the amountOutMin check to pass, regardless of the real swap
amount.

Overall, the router lacks robustness against these edge-case scenarios.
Fortunately, these cases are expected to be extremely rare since all pairs
are whitelisted within the SuperNova system, making their occurrence

improbable.

It is recommended to combine the before-and-after balance validation
pattern in the swap functions with an additional check on the advertised
output amount of the final pair. While the actual received amount may be

lower, this provides a useful secondary layer of verification.

Furthermore, a highly effective additional security measure would be to
simulate the swap on the frontend and validate the results of this simulation
(a so-called “dry-run”). This allows potential issues to be identified before the

transaction is executed on-chain.

It should be noted that implementing reentrancy guards alone is insufficient,

as they do not mitigate the CowSwap-based reentrancy vector.

RouterV2 Paladin Blockchain Security

https://paladinsec.co

Resolution

Issue #27

Severity

Description

Recommendation

Resolution

Page 54 of 127

& RESOLVED

The client has indicated that they will not add reentrancy tokens to

their routes.

The client has indicated they will coordinate with the teams of
fee-on-transfer tokens to ensure that the SuperNova tokens are

whitelisted from the fee, before adding these tokens.

The requested minimum amount out might not be correctly enforced for
special tokens

INFORMATIONAL

The requested minimum output amount is validated against the amount that
the pair attempts to send to the user, rather than the actual amount the user
ultimately receives. If the final token in the swap has special behavior, this

can result in the minimum output requirement not being properly enforced.

It is recommended to document this behavior to ensure clarity and
prevent misuse. Implementing a before-and-after balance validation pattern
alongside the existing strict output check could provide an ideal balance

between safety and functionality.

@ ACKNOWLEDGED

RouterV2 Paladin Blockchain Security

https://paladinsec.co

2.11 RouterHelper

RouterHelper is an upgradeable sub-contract of RouterV2. It performs the pre-calcu-
lations for the all the individual swaps of a swap route, and facilitates the integration of

concentrated liquidity, stable and basic pairs all into a single swap.

2.11.1 Privileged Functions

* transferOwnership

* renounceOwnership

Page 55 of 127 RouterHelper Paladin Blockchain Security

https://paladinsec.co

2.11.2 Issues & Recommendations

Issue #28

Severity

Description

Recommendation

Resolution

Page 56 of 127

Swap prices for stable pairs will mostly return either “0” or “1” due to a
normalization error

The stable swap prices have been updated by the client to be correct, as

previously the returned prices were quite arbitrary.

The prices are now calculated within _calculateStableSwapPrice-
, which calculates the derivative of the stable curve invariant. Though this

derivative appears correct, the normalization of the result is incorrectly set

to 1 instead of 1e18. This causes the prices to be rounded to full numbers.

For most stable pairs, since their prices mostly hover around the 1:1

exchange rate, their returned prices will mostly be either 8 or 1 due to the
normalization and rounding down behavior of the function.

The prices returned from the RouterHelper functions do not appear to be
used anywhere, so this issue is only relevant for integrating contracts.

Normalize the result correctly. Take into account that division before multipli-

cation causes precision to be lost, while doing multiplication before division

can cause overflow with high supply tokens. A trade-off should thus be made.
@& RESOLVED

We remind integrators that the new prices are accurate but have

complex rounding behavior, as both the math numerator and

denominator round down.

RouterHelper Paladin Blockchain Security

https://paladinsec.co

Issue #29

Severity

Description

Recommendation

Resolution

Page 57 of 127

getAmountsOut does not handle failures gracefully

LOW SEVERITY

getAmountsOut has multiple branches in its body that can fail. I
statements are created for all of them, and risky calls are wrapped in

try-catch blocks.

The concern is that the exception cases are only properly handled in a single

branch, while all other exception branches are not properly handled. Only in

a single branch is the function returned early via a break statement. In all
other branches, such as when the pair address is not a V2 pair and when the

try statements fail, iteration will be attempted to continue instead of failing

early.

In the commits for this review, an attempt was made to resolve this, and
nearly all of the locations of the above issue now have break statements.
However, handling is not included in the exception scenario where the

following if-statement is incorrect.

Consider handling the missed scenario as well.

& RESOLVED

RouterHelper Paladin Blockchain Security

https://paladinsec.co

Issue #30

Severity

Description

Recommendation

Resolution

Page 58 of 127

_calculateStableSwapPrice is slightly vulnerable to overflow reverts

INFORMATIONAL

_calculateStableSwapPrice accurately calculates the marginal swap
price of stable pairs given their reserves. However, the math within this

function can become a bit large for tokens with a very high supply and low

number of decimals:

Lines 188-193

uint normRO® = decimals@ <= 18 ? reserve@ * 10**(18 -
decimals@) : reserve® / 10**(decimals® - 18);
uint normR1 = decimals1 <= 18 ? reservel * 10**(18 -
decimals1) : reservel / 10**(decimals1 - 18);

uint r8Sq = normR@ * normR@ / 1e18;
uint r1Sq = normR1 * normR1 / 1e18;
uint den = normR@ * (r@Sq + 3 * r1Sq);

Given pairs with large reserves, this math will revert seemingly more quickly
than the stable pairs will start reverting (all swap pairs have an upper limit on

reserve sizes as well).

This does not need to be resolved if such tokens are not planned to be added.

@& RESOLVED
We remind integrators that the new prices have complex rounding

behavior.

RouterHelper Paladin Blockchain Security

https://paladinsec.co

Issue #31

Severity

Description

Recommendation

Resolution

Page 59 of 127

_swapRatio fixes have small edge cases which can cause reverts and small
side-effects in very specific situations

INFORMATIONAL

Line 156

uint actualAmountIn = amountIn + (pairSwapMetaData.bala-
nceA - pairSwapMetaData.reserveA);

The brackets here seem unnecessary and slightly increase underflow revert
risk if the token is rebasing with a contracting supply. Obviously such tokens

are not well supported in Uniswap in the first place.
Line 158
pairSwapMetaData.balanceA += amountIn - feeAmount;

A similar concern to the above issue is present here, where if feeAmount

exceeds amountIn due to there being a large balance increase, the function
reverts. Arguably reverting in this scenario is probably desirable as this is an

odd and unnatural scenario indicating that the user is likely being abused

somehow. No changes are thus needed from our side with regards to this.
afterReserveB is more accurately set to balanceB - amountOut as
well.

Consider fixing the above concerns with the new _swapRatio implementa-
tion as you see fit. These are very niche edge cases so this issue can also

simply be acknowledged.

& RESOLVED

RouterHelper Paladin Blockchain Security

https://paladinsec.co

Issue #32
Severity

Description

Recommendation

Resolution

Issue #33

Severity

Description

Page 60 of 127

getAmountOut will still return a value even if the factory paused V2 swaps

INFORMATIONAL

The getAmountOut function does not account for the fact that the factory

might pause v2 swaps.

It is recommended to evaluate whether this constitutes a security or

operational issue. If determined to be problematic, consider adding checks

for the isPaused state to all relevant functions
& RESOLVED

The client has confirmed this is not a concern for them.

Typographical issues and gas optimizations

INFORMATIONAL

Line 8

import '@cryptoalgebra/integral-periphery/contracts/int-
erfaces/ISwapRouter.sol';

This import appears unused.
Lines 12 and 14

import "@openzeppelin/contracts-upgradeable/access/Owna-
bleUpgradeable.sol";
contract RouterHelper is OwnableUpgradeable {

OwnableUpgradeable appears to currently be unused, though we
understand it being included for future upgrades.

Line 32
address public factory;

All other address variables are cast to their type. Consider casting this to

IPairFactory as well to avoid having to cast it in all use cases.

Lines 108-109

(uint decimals®, uint decimals1, , , , ,) = IPair(rout-
es[i].pair).metadata();

(uint beforeReserve®, uint beforeReservel,) = IPair(rou-
tes[i].pair).getReserves();

RouterHelper Paladin Blockchain Security

https://paladinsec.co

All of these values are already fetched within the earlier _swapRatio call.
Fetching them again wastes gas.

Line 141

uint afterReserveA = pairSwapMetaData.reserveA +
(amountIn - (amountIn * IPairFactory(factory).getFee(p-
air, pairSwapMetaData.stable) / 10000));

This fee was already fetched on line 138, consider simply re-using it.
Line 165

// performs chained getAmountOut calculations on any
number of pairs

The function below this comment does not do any chained operations.
Line 210

// calculates the CREATE2 address for a pair without
making any external calls

Actually, the function below this does not use CREATE2 and does use an

external call.
Line 212

(address token@, address token1) = sortTokens(tokenA,
tokenB) ;

This is currently unnecessary as the getPair function below it is robust
against the ordering of the tokens.

Recommendation Consider fixing the typographical issues and gas optimizations.

Resolution @ PARTIALLY RESOLVED

Page 61 of 127 RouterHelper Paladin Blockchain Security

https://paladinsec.co

2.12 VotingEscrow

VotingEscrow is the primary governance contract for the system. It defines the voting
escrow NFT token, which is a locked/staked variant of the native token and is based on the

Curve veCRYV token.

Similar to the original Curve voting-escrow, it facilitates locks of up to 4 years to be created.
These locks then decay linearly in voting power over those four years. If locks are created

with a smaller lock duration such as two years, their voting power starts off proportionally
lower, i.e., 50% of the amount of voting escrow locked for 2 years. The voting power will then
decay at the same rate for the remaining two years. The system also provides the option of
"permanently" locking a position, which disables decay. This position can then be converted

back at any time to re-enable the decay, but doing so will lock it for four years.

A unique feature is that native tokens can be permanently staked without the option to
unlock as well, which permanently burns the underlying native tokens. This type of NFT is

called an SMNFT. A bonus of 10% in voting power is granted to such locks — this bonus is
configurable.

The VotingEscrow locks are represented as transferable NFTs. However, transfers are
disabled while the NFT has votes cast in VoterV3.

Users can mint new locks for themselves and others, and they can increase the duration
or value of their own locks as well as increase the value of others’ NFTs. If enabled by
governance, they can split their NFTs into two. They can merge their NFTs at any time

— merging NFTs will combine them into a single NFT with the largest lock duration and
upgrade the other NFT into permanent/sMNFT status if it is not already that. It allows an
NFT to be moved into lock and unlock status, or upgraded to sMNFT (which is non-re-

versible).

When NFTs are eventually withdrawn back into the native token after they expire, the native
tokens are sent to the caller of that transaction which can be the owner of the NFT but can

also be an approved caller.

VotingEscrow positions can vote on gauges such that they receive weekly emissions, and
receive the bribes and trading fees of those pools as compensation. They also receive a

small weekly rebase staking reward.

2.12.1 Privileged Functions

Page 62 of 127 VotingEscrow Paladin Blockchain Security

https://paladinsec.co

+ setTeam

* setArtProxy

+ setVoter

* toggleSplit

+ setSmNFTBonus

Page 63 of 127 VotingEscrow Paladin Blockchain Security

https://paladinsec.co

2./12.2 Issues & Recommendations

Issue #34 NFTs are incorrectly self-delegated during NFT transfers
Severity @ HIGH SEVERITY
Description The vote delegation logic was redesigned after several concerns were raised

in the original audit. However, the refactored code still contains several

issues.

Token mints, burns, and transfers all move the delegation from the previous
owner of the NFT to the new owner. This is flawed as the delegation logic
assumes delegation is always moved from the delegatee of the previous

owner to the delegatee of the new owner. This becomes an issue because

the delegate functions still properly move all tokens from the previous
delegatee to the new delegatee.

The combination of these two different behaviors allows a token to be

delegated to multiple accounts. For example, assume Alice executes:

1. delegate(bob)

2. create_lock(..) - Adds the minted tokenId to the delegated
tokens of alice

3. delegate(alice) - Adds the minted tokenId AGAIN to alice

This sequence will end up with the tokenId being included twice in Alice’s

delegations list, allowing the various getPastVotes functions to double
count her voting power.

Recommendation Consider removing all delegation logic completely if there is no planned use

forit. Alternatively, consider consistently using the delegates for the moveTo-
kenDelegates call. The ownerOf checks within moveTokenDelegates

still appear fully incorrect and the MAX_DELEGATES DDOS risk still appears
to be present. We do not recommend using this delegation logic in its current

state.

Resolution @ RESOLVED

Delegation was fully removed.

Page 64 of 127 VotingEscrow Paladin Blockchain Security

https://paladinsec.co

Issue #35

Severity

Description

Recommendation

Resolution

Page 65 of 127

Split can now leave one of the two NFTs with a zero value, an outcome which
was previously impossible

LOW SEVERITY

Line 1181

require(_splitAmount > 0@ && _splitAmount <= newLock-
ed.amount, "ISA");

The second portion of the above requirement was newLocked .amount

> _splitAmount, meaning that the full amount could not be split off
previously, but now it can be.

This means that the split function can be used to mint NFTs with a zero
value when it was initially impossible and thus increases the attack surface

of this contract.
As fixes were being iterated quickly with the client, this was immediately fixed
when indicated to them; hence the impact was not investigated further.

Consider reverting to a strict lesser than check.

& RESOLVED

The requirement is made strict again.

VotingEscrow Paladin Blockchain Security

https://paladinsec.co

Issue #36

Severity

Description

Recommendation

Resolution

Issue #37

Severity

Description

Recommendation

Resolution

Page 66 of 127

ownerOf does not revert for invalid tokenld inputs

LOW SEVERITY

ownerOf does not explicitly revert for invalid inputs, which is not an expected
property for NFTs.

This is worsened by the fact that a zero owner is sometimes used to denote
that the NFT does not exist, but NFTs can be transferred to the zero address

while they still exist.

Consider explicitly reverting this function. However, other locations use this
function to check whether a token exists, and those functions may break if it

starts reverting. All relevant locations would need to be refactored.

@ ACKNOWLEDGED

Unsafe casts occur throughout the contract which reduces code-safety,
especially if SUPERNOVAs supply ever increases significantly

LOW SEVERITY

Throughout the contract, inputs and balances get downcast into smaller

types without explicitly checking against overflows. This is typically fine as

the SUPERNOVA token supply will not be large enough for such overflows to
happen, but as demonstrated in a high severity overflow issue, it can easily

cause for issues to slip through.
If this contract were to be ever re-used for a token with a larger supply, it may
also cause issues.

Consider carefully going through the contract and refactoring all locations

where unsafe casts occur.

@ ACKNOWLEDGED

VotingEscrow Paladin Blockchain Security

https://paladinsec.co

Issue #38

Severity

Description

Recommendation

Resolution

Page 67 of 127

Several functions lack reentrancy guards

INFORMATIONAL

VotingEscrow has reentrancy guards. It is not immediately clear why this
is, but the argument to add them out of precaution is understood.

However, currently some key functions lack such guards and could still
be reentered into if reentrancy was possible. The user facing functions
are: checkpoint, transferFrom, safeTransferFrom, lockPerma-
nent and unlockPermanent.

This issue is raised informationally as reentrancy hooks are not observed,

except with safeTransferFrom, but there it happens at the end and is still
permitted to reenter (though from this perspective, reentrancy at the end

there is desired).

Consider adding reentrancy guards to the above functions if there is an
actual reason for the guards on the other functions. Pay explicit attention
to the reentrancy guard for safeTransferFrom: we recommend adding it

to _transferFrom instead to allow reentrancy from the reentrancy hook
into the various other functions, as often the receipt contract will want to

immediately do something with the token, and would otherwise be prevented

from doing so. Once a guard is added to _transferFrom, do not add an
additional guard to transferFrom as they will be nested and revert.

@ ACKNOWLEDGED

VotingEscrow Paladin Blockchain Security

https://paladinsec.co

Issue #39

Severity

Description

Recommendation

Resolution

Issue #40

Severity

Description

Recommendation

Resolution

Page 68 of 127

getsmNFTPastVotes seems to calculate the NFT balance twice

INFORMATIONAL

Lines 1306-1308

if ((up.smNFT + up.smNFTBonus) == @) continue;

// Use the provided input timestamp here to get the right
decay

votes = votes + VotingBalancelLogic.balanceOfNFT(tId,
timestamp, votingBalancelogicData);

It is unclear why this function does not simply add up.smNFT + up.smN-
FTBonus to votes. If everything is implemented correctly, this appears to
be what balanceOfNFT should return.

Consider investigating the above optimization to see if there is any reason to

not directly implement balanceOfNFT. A don’t-repeat-yourself argument
could be made for the more expensive code, acknowledging this issue is

therefore understandable as it would reduce the risk for future refactors.

& RESOLVED

Typographical issues

INFORMATIONAL

Line 1324

function _delegate(address delegator, address delegatee)
internal {

This function appears to be unused and can be removed.
Line 1379
if (delegatee == address(0)) delegatee = signatory;

Though harmless, a non-zero check already occurs at the start of this

function.

Consider fixing the typographical issues.

& RESOLVED

VotingEscrow Paladin Blockchain Security

https://paladinsec.co

2.15 \VotingBalancelLogic

VotingBalancelogic is a library used within the VotingEscrow contract. It is
responsible for calculating historical balances and total supplies, based on the checkpoint

data recorded in the VotingEscrow contract.

Vulnerabilities which have been described in the VotingEscrow contract might have their
root cause within this library. The reader is recommended to read these two sections of the

report together. The casting issues from VotingEscrow in the initial audit are present here
as well and should be resolved here as well.

The block-based totalSupply function will start malfunctioning if no snapshot occurs for
255 weeks. This seems unlikely enough to not explicitly describe as an issue.

The epochs are now overwritten if they occur in the same timestamp. This means if multiple
blocks occur in a single timestamp, only the last one will be used. Data fetched for previous
blocks will be approximated, even though this data was present at some point. The client is
advised to be extremely careful with block-based functions, as even if they are fetched for
historical blocks, their data may not be final and can change until the block is fully locked in.
Using the block-based balance functions without consulting an auditor for every use case
is strongly discouraged.

2.13.1 Privileged Functions

None.

Page 69 of 127 VotingBalancelogic Paladin Blockchain Security

https://paladinsec.co

2.13.2 Issues & Recommendations

Issue #41 Block-based historical balance and total supply functions may not be
consistent until a snapshot occurs after the provided block

Severity LOW SEVERITY

Description The block-based totalSupplyAt and balanceOfAtNFT approximate the
balance and supply at the provided historical block by interpolating the two

snapshots around the provided block number.

The issue occurs when there are no snapshots after the provided block
number. In this case, the interpolation occurs with the snapshot before it and
the current block's number and timestamp. This interpolation will change as
soon as an actual snapshot occurs with the real block .number, alongside
when any new block is produced. This means that totalSupplyAt and

balanceOfATNFT will return changing values for a fixed historical block until
a snapshot locks that historical block in.

Recommendation Avoid using the block based accounting functions, since the interpolation

logic is an approximation to some extent anyway.

Resolution @ RESOLVED
The client confirms they will avoid using this. No code changes were

made.

Page 70 of 127 VotingBalancelogic Paladin Blockchain Security

https://paladinsec.co

Issue #42

Severity

Description

Recommendation

Resolution

Page 71 of 127

Typographical issues

® INFORMATIONAL
Line 15

/// @notice Get the current voting power for °~_tokenId"
This comment is outdated as the function below it gets a historical value.

Lines 16, 68 and 234

/// @dev Adheres to the ERC20 ‘"balanceOf interface for
Aragon compatibility

/// @dev Adheres to MiniMe ‘“balanceOfAt" interface:
https://github.com/Giveth/minime

/// @dev Adheres to the ERC20 "totalSupply’ interface for
Aragon compatibility

This token is an NFT and not an ERC20 token. These comments are likely
outdated and incorrect.

Lines 77-78

// Copying and pasting totalSupply code because Vyper
cannot pass by
// reference yet

These comments appear outdated as the contract is written in solidity.

Lines 156 and 159

/// @notice Binary search to estimate timestamp for block
number
/// @return Approximate timestamp for block

This function does something else.

Finally, this contract has identical casting issues to VotingEscrow.
Consider fixing the typographical issues.

@ PARTIALLY RESOLVED

VotingBalancelogic Paladin Blockchain Security

https://paladinsec.co

2.14 \VotingDelegationLib

VotingDelegationlLib is a utility contract used by the VotingEscrow contract to
handle most of its “delegate” voting logic, where veNOVA NFT holders can delegate their
voting rights (though not the VoterV3 voting rights) to a different wallet.

Itis used on any token transfer to update the index of which tokenIds have been delegated
to specific wallets.

This contract has been fully removed from the codebase.

2141 Privileged Functions

« setTeam [team]

« setVotingEscrow [team]

Page 72 of 127 VotingDelegationLib Paladin Blockchain Security

https://paladinsec.co

2.14.2 Issues & Recommendations

Issue #43

Severity

Description

Recommendation

Resolution

Page 73 of 127

Anyone can call the internal moveTokenDelegates and moveAllDelegates
functions, allowing for exploiters to delegate arbitrarily to their own wallets
and fully breaking the delegation logic

@ HIGH SEVERITY

During the changes made in this audit scope, VotingDelegationlLib was
moved from an external library to a separate contract. External libraries

are contracts deployed at a separate address but called from within the

context of the VotingEscrow contract using DELEGATECALL. This means
that even though the functions can be called by anyone, the context of the

VotingEscrow address will not be used and there is no problem if they are
called directly.

During the changes that triggered this diff-based audit, the client moved this

contract to a real separate contract. This means that the new VotingDele-

gationlLib is no longer delegated to but instead gets called directly. It now
has its own internal storage that is used by all callers.

The client did not fully realize this and forgot to add authorization to the

critical functions of this contract, meaning anyone can call them. This allows

anyone to arbitrarily move delegates for tokenIds and even allow a single
tokenId to be added arbitrarily many times as a delegation.

This fully breaks the system, and any other systems relying on delegation vote

counts will be exploitable as the vote counts can be arbitrarily inflated.

Consider only allowing the external functions to be called by the votingE-

scrow address.
& RESOLVED

The delegation logic has been fully removed.

VotingDelegationLib Paladin Blockchain Security

https://paladinsec.co

Issue #44

Severity

Description

Page 74 of 127

The delegation logic is fundamentally broken in multiple ways, which can be
abused to DoS VotingEscrow mints and transfers, prevent delegations to any
wallet and clear a wallet’s delegates at will

@ HIGH SEVERITY

VotingEscrow supports functions to delegate voting rights to other wallets.
Whenever an NFT is transferred to a different wallet, the delegation gets

updated to the configured delegate of the recipient.
This logic is fundamentally broken for multiple reasons.

Reason 1: Moving delegates to a recipient is not permitted if it causes them
to have more than MAX_DELEGATES delegated tokenIds.

Lines 96-99

require(
dstRep0ld.length + 1 <= MAX_DELEGATES,
"tokens>1"

)

Whenever a token is transferred to a wallet (mints, transfers and splits), its
added to the list of delegated tokens of the delegatee of the recipient. This
addition reverts as soon as the delegatee has reached MAX_DELEGATES to

avoid the gas consumption of the various for-loops becoming too excessive
(though it will already be very high at MAX_DELEGATES).

The critical issue is that minting and sending tokens to a wallet is nearly
free, as there is no minimum value attached to tokens nor a real minimum
stake duration. A malicious actor can permanently DoS all veNFT mints and
transfers in the public mempools permanently by consistently frontrunning

them with a transaction that mints 1024 tokens to the destinations delegatee.

Reason 2: Fundamental logic flaw in moveTokenDelegates allows an
exploiter to clear delegates for any wallet without consent of the delegators.

Lines 68-73

if (_isCheckpointInNewBlock) {
if (ownerOfFn(tId) == srcRep) {
srcRepNew.push(tId);
}

i++;
} else {
if(ownerOfFn(tId) !'= srcRep) {
srcRepNew[i] = srcRepNew[length -1];

srcRepNew.pop();

VotingDelegationLib Paladin Blockchain Security

https://paladinsec.co

Recommendation

Resolution

Page 75 of 127

length--;
} else {
i++;

The above extract of code is taken from the moveTokenDelegates
function. This function is called whenever an NFT is moved from wallet A to
B, and moves the tokenId from the delegate index of delegate(A) to dele-
gate(B). In the above snippet, srcRep is delegate(A), while ownerOf (tId)
is always address(0) due to the ordering within transferFrom.

Delegates can never be address(0) due to the default case being self-del-
egation. This means that the code-snippet above will consistently not push

any tokenId to new checkpoints and clear the whole array of an existing
checkpoint in the other branch. In other words, the whole delegation logic
is fundamentally broken. Even though it is already quite broken in normal
usage, an exploiter can also target specific wallets to clear their delegates by

first delegating to them and subsequently removing this delegate.

This issue has been copied from the initial audit as neither were resolved at

the commit of the preliminary scope.

Resolving these issues while retaining a correct index will require a
fundamental rewritting of the whole delegation algorithm. This may even
require advanced binary search/tree algorithms to make it work in an
acceptable time-complexity. It is clear that achieving the desired use-case
without MAX_DELEGATES will be an engineering endevour outside of the
scope of this audit. A short-term fix could be to only add tokens to delegates if
their value exceeds a certain value, and requiring wallets to opt into receiving

delegations.

Since the VotingEscrow is not upgradeable, there is not much which can
be done here in practice, apart from acknowledging this issue and not using

the delegation logic.
@ RESOLVED

The delegation logic has been fully removed.

VotingDelegationLib Paladin Blockchain Security

https://paladinsec.co

Issue #45

Severity
Description
Recommendation

Resolution

Page 76 of 127

Typographical issues
setTeamand setVotingEscrow lack events.
Consider fixing the typographical issues.

& RESOLVED

The delegation logic has been fully removed.

VotingDelegationLib

Paladin Blockchain Security

https://paladinsec.co

215 \VoterV3

VoterV3isthe entry point for voting escrow holders to vote on which gauges should receive

emissions. It keeps track of all issued votes and is called by the GaugeManager when it
needs to determine how to distribute the weekly emissions across all gauges.

VoterV3 interacts with the VotingEscrow contract directly to exchange information on
voting escrow position changes, so that the voter is updated appropriately and that certain

actions are not possible while a voting escrow NFT has outstanding votes on it. However,
VoterV3 does not account for the decay effect of the voting escrow NFTs. It has a feature

where users can trigger the decay for other NFTs by calling poke, but if this is not done, the
voting weight of an NFT will remain identical to when the initial vote was cast, even after

the NFT is fully decayed to a zero balance.

The audit has been conducted under the assumption that the bribes, which also get a
notification whenever a vote gets cast, do not perform any external calls. This audit should
not be used if the implementation of the bribes changes to one where they interact back with
the voter, as the bribes would potentially interact with it during an inconsistent state, which
can lead to issues. This audit should only be used with the current version of all contracts
in the system, and not when there are changes to how certain contracts interact with each.

The voter has been slightly redesigned to keep an index of the voting totals for each epoch

that passes. This way, the GaugeManager can more correctly use the votes. This system
will only work correctly as long as at least a single vote occurs each epoch. Ideally, all

pools should be polled via checkpointPoolWeightsForNextEpoch. The checkpoint
system could’ve been avoided by keeping track of the last epoch where a change occurred

and simply using the votes from that point. If certain pools are not checkpointed, the
system should still function, but the total sum of votes for that epoch will be less than

the epochTotalWeight for that epoch. This means that some rewards will become
permanently unclaimable.

2.15.1 Privileged Functions

« setMaxVotingNum [VOTER_ADMIN]
+ setGaugeManager [VOTER_ADMIN]
« setEpochOwner [owner]

« setPermissionsRegistry [owner]

Page 77 of 127 VoterV3 Paladin Blockchain Security

https://paladinsec.co

« transferOwnership [owner]

* renounceOwnership [owner]

Page 78 of 127 VoterV3 Paladin Blockchain Security

https://paladinsec.co

2.15.2

Issue #46

Severity

Description

Page 79 of 127

Issues & Recommendations

Typographical issues and gas optimizations

@ INFORMATIONAL

Lines 4, 6-8, 17,18, 21, 27, 28, 83-86, 88-90

import './libraries/Math.sol';
import './interfaces/IERC20.sol’;

import './interfaces/IPairInfo.sol’;

import './interfaces/IPairFactory.sol’';

import "@openzeppelin/contracts-upgradeable/token/ERC20-

/utils/SafeERC20Upgradeable.sol”;

import "@openzeppelin/contracts-upgradeable/token/ERC20-

/IERC20Upgradeable.sol”;

using SafeERC20Upgradeable for IERC20Upgradeable;

address[] public pools;

address public epochOwner;

modifier Governance() {
require(IPermissionsRegistry(permissionRegistry).hasR-

ole("GOVERNANCE",msg.sender), 'GOVERNANCE');

-

}

modifier GenesisManager() {
require(IPermissionsRegistry(permissionRegistry).hasR-
ole("GENESIS_MANAGER", msg.sender), 'GENESIS_MANAGER');

}

All of these lines appear unused, alongside with the functions related to the

pools and epochOwner. All of this can be deleted from our perspective,
though we recommend making sure that no third-party contracts are using

any of these functions. Given that the contracts are already in production this

can probably not be guaranteed.
Line 25
address internal base; // Sthe token

This should say the SNOVA token instead.

Line 31
uint public EPOCH_DURATION;

Consider marking this as constant instead.

VoterV3 Paladin Blockchain Security

https://paladinsec.co

Line 42

// nft => timestamp of last vote (this is shifted to
thursday of that epoc)

This should say “epoch” instead.
Lines 45-46

event Voted(address indexed voter, uint256 tokenId,
uint256 weight);
event Abstained(uint256 tokenId, uint256 weight);

These events should include the pool address. It’s also not clear to use why
the indexation is inconsistent.

Line 88

modifier EpochManagerOrVoterAdmin() {

This new modifier appears unused, alongside other modifiers. Perhaps it was

added for future-proofing.

Line 156

votes[_tokenId][_pool] -= _votes;
Consider simply setting this to zero to save gas.
Lines 159, 160, 238 and 239

IBribe(internal_bribe) .withdraw(uint256(_votes),
_tokenId);
IBribe(external_bribe).withdraw(uint256(_votes),
_tokenId);
IBribe(internal_bribe).deposit(uint256(_poolWeight),
_tokenId);
IBribe(external_bribe).deposit(uint256(_poolWeight),
_tokenId);

Nearly all setters lack events and gas optimizations.
Line 255-256 (example)

totalWeight += _usedWeight;
epochTotalWeight[epochNext] = totalWeight;

Page 80 of 127 VoterV3 Paladin Blockchain Security

https://paladinsec.co

The second line re-fetches values from storage even though they could’ve
been stored in memory to save gas. This pattern occurs with all the check-
pointing logic added in this PR.

Recommendation Consider fixing the typographical issues.

Resolution

Page 81 of 127 VoterV3 Paladin Blockchain Security

https://paladinsec.co

2.16 GaugelManager

GaugeManager is responsible for keeping track of all gauges which can be voted on to
receive emissions. Anyone can create new gauges for pools which have been deployed by

the official pair factories.

After gauge creation, the gauge and its related liquidity pool are stored and bribe contracts

are created for them. Every epoch, the GaugeManager will distribute the weekly emissions
to all registered gauges based on the votes each received relative to the others. This voting

happens in VoterV3.

GaugeManager also defines some utility functions for users to claim rewards from multiple
gauges and bribes all at once, instead of having to create a transaction for each of them.

GaugeManager has several highly intrusive setter functions which can replace core de-

pendencies such as the farmingParam, minter, voter and bribeFactory. Replacing
these can and likely will lead to severe side-effects such as complete mis-accounting of

emissions. Auditor confirmation is always recommended before adjusting any intrusive

setters.

Within this code update, votes must be present for emissions to be distributed to gauges.
This may create a deadlock in the minter if there are no votes yet and no one has tokens
to vote. As long as users have tokens to vote, which is more realistic, it appears that in this
scenario at least one week must pass before resolution. This scenario should be avoided by

ensuring votes are always present.

2.16.1 Privileged Functions

« setBribeFactory [GAUGE_ADMIN]

+ setVoter [GAUGE_ADMIN]

« setBlackGovernor [GAUGE_ADMIN]
« distributeFees [GAUGE_ADMIN]

« distributeAll [GAUGE_ADMIN]

« distributeRewards [GAUGE_ADMIN]
« distribute [GAUGE_ADMIN]

« setMinter [GAUGE_ADMIN]

Page 82 of 127 GaugeManager Paladin Blockchain Security

https://paladinsec.co

« updateGaugeFactory [GAUGE_ADMIN]

« updateGaugeFactoryCL [GAUGE_ADMIN]

« updatePairFactory [GAUGE_ADMIN]

« updatePairFactoryCL [GAUGE_ADMIN]

« acceptAlgebraFeeChangeProposal [GAUGE_ADMIN]

« distributeFees [EPOCH_MANAGER or GAUGE_ADMIN]

« distribute [EPOCH_MANAGER or GAUGE_ADMIN]

« carryForwardTotalVotesForNextEpoch [EPOCH_MANAGER or GAUGE_ADMIN]
« carryForwardVotesForNextEpoch [EPOCH_MANAGER or GAUGE_ADMIN]
« killGauge [GOVERNANCE]

* reviveGauge [GOVERNANCE]

+ setPermissionsRegistry [owner]

« setAlgebraPoolApiStorage [owner]

« transferOwnership [owner]

* renounceOwnership [owner]

Page 83 of 127 GaugeManager Paladin Blockchain Security

https://paladinsec.co

2.16.2 Issues & Recommendations

Issue #47

Severity

Description

Recommendation

Resolution

Page 84 of 127

Gauge distribution amounts may still be inaccurate if a distribution is only
done after a full epoch has elapsed

LOW SEVERITY

The behavior of gauge distributions has been significantly improved.

Previously, there was a race condition where the total eligible amount of votes

was considered to be the amount of votes when notifyRewardAmount was
called, but then the vote amounts for distributing these rewards to the gauges

were used as the vote amounts at the time this distribution was called.

Now, the mechanism has been improved to always use the last total vote

count of the epoch before notifyRewardAmount was called, and the last
vote counts of the epoch before the distribute functions are called.

This means that as long as both of these functions are called within the same

epoch (7 days), the count is accurate.

This leaves the risk that if the gauge distribution does not occur for a full

epoch, it will misassign rewards in the subsequent epoch.

Consider always distributing to all gauges every epoch. Also consider adding
default behavior which prevents distribution if a full epoch has elapsed. A new
function with an explicit boolean to perform an incorrect manual distribution
could be added to catch up.
@ RESOLVED

The client has not made changes to this behavior but is aware of

this and will ensure that they are always timely called. The possibility
therefore theoretically persists that they don't, eg. if a week-long chain

outage occurs.

GaugeManager Paladin Blockchain Security

https://paladinsec.co

Issue #48

Severity

Description

Recommendation

Resolution

Page 85 of 127

Manual distributeRewards requires tokens to be manually sent to the Gauge-
Manager or else it will use the minter rewards which are supposed to be
distributed to gauges

LOW SEVERITY

During the changes, a new manually callable distributeRewards
functions was added. This function can only be called by the GAUGE_ADMIN.
Its role is to let the team grant additional rewards to particular gauges in the

ongoing epoch.

This function simply uses any tokens already present in the GaugeManager.
By default, these are only the tokens minted to it for automatic distribution,

and would thus be incorrectly assigned to these manual rewards.

The way to prevent this, which is likely what the team would do, is to
manually send additional rewards into the GaugeManager before calling the
distributeRewards function. This seems prone to error.

Consider transferring the rewards via safeTransferFrominto the Gauge-
Manager at the top of the function, after the require statement.

& RESOLVED

GaugeManager Paladin Blockchain Security

https://paladinsec.co

Issue #49 Factory update functions emit incorrect events
Severity LOW SEVERITY

Description Lines 567-597

function updateGaugeFactory(address _gaugeFactory)
external GaugeAdmin {
require(_gaugeFactory != address(0), "ZA");
require(_gaugeFactory.code.length > 0, "CODELEN");
require(_gaugeFactory != gaugeFactory, "NA");
gaugeFactory = _gaugeFactory;
emit SetGaugeFactory(gaugeFactory, _gaugeFactory);

function updateGaugeFactoryCL(address _gaugeFactoryCL)
external GaugeAdmin {
require(_gaugeFactoryCL != address(0), "ZA");
require(_gaugeFactoryCL.code.length > @, "CODELEN");
require(_gaugeFactoryCL != gaugeFactoryCL, "NA");
gaugeFactoryCL = _gaugeFactoryCL;
emit SetGaugeFactoryCL(gaugeFactoryCL, _gaugeFacto-
ryCL) ;
}

function updatePairFactory(address _pairFactory)
external GaugeAdmin {
require(_pairFactory != address(9), "ZA");
require(_pairFactory.code.length > 0, "CODELEN");

require(_pairFactory != pairFactory, "NA");
pairFactory = _pairFactory;
emit SetPairFactory(pairFactory, _pairFactory);

function updatePairFactoryCL(address _pairFactoryCL)
external GaugeAdmin {
require(_pairFactoryCL != address(0), "ZA");
require(_pairFactoryCL.code.length > 0, "CODELEN");
require(_pairFactoryCL != pairFactoryCL, "NA");
pairFactoryCL = _pairFactoryCL;
emit SetPairFactoryCL(pairFactoryCL, _pairFactoryCL);

}

The events emitted in the new factory update functions emit the same

variable twice due to an ordering issue in the event emission.

Page 86 of 127 GaugeManager Paladin Blockchain Security

https://paladinsec.co

Recommendation

Resolution

Issue #50

Severity

Description

Recommendation

Resolution

Page 87 of 127

The goal of the event is however to first emit the old value and subsequently

emit the updated value.

Consider moving the event to above the line which updates storage.

& RESOLVED

Rewards directly sent to Algebra’s reward system will never be distributed

LOW SEVERITY

The Algebra reward system allows any address to invoke AlgebraEter-

nalFarming: :addRewards. Due to the logic in notifyRewardAmount
within the gauge manager, the reward rate will only ever be based on rewards

distributed via the GaugeCL instance. Any funds sent via addRewards
appear to be locked until the gauge ceases updating the reward rate.

addRewards should be restricted such that it can only be called by the
gauges.

@ ACKNOWLEDGED

GaugeManager Paladin Blockchain Security

https://paladinsec.co

Issue #51

Severity

Description

Recommendation

Resolution

Issue #52

Severity

Description

Page 88 of 127

Once-per-epoch and authorization checks for distributeFees can be
bypassed to some extent

INFORMATIONAL

The distributeFees functions include several checks: only authorized

callers may invoke them, and they can execute claimFees only once per
epoch.

These checks can be almost entirely bypassed (except for the portion that

withdraws from the community vaults for CL gauges) by directly invoking

claimFees on the gauges. This function lacks any authorization checks.

Authorization checks should be added to claimFees if per-epoch claiming
is required.

@ ACKNOWLEDGED

Typographical issues and gas optimizations

INFORMATIONAL

Line 13
import './interfaces/IGaugeManager.sol';

Consider actually inheriting this such that the interface is guaranteed to be

correct.
Line 20

import './interfaces/IBribe.sol';
This is already imported.

Line 26

import './libraries/Math.sol';
This library is unused and can be removed.

Line 27

import "@openzeppelin/contracts-upgradeable/token/ERC20-
/IERC20Upgradeable.sol”;

TERC20 was already imported, we see no reason to import this as well as the
interface is identical.

Lines 38 and 42

GaugeManager Paladin Blockchain Security

https://paladinsec.co

Page 89 of 127

uint256 internal index;
mapping(address => uint256) internal supplylIndex;

Consider exposing a pendingEmissions function for these variables.
Line 39
address internal base;

This variable can be marked as public to allow inspection both off-chain
and by other contracts.

Lines 43

mapping(address => uint256) public claimable; // gauge =>
claimable Sthe

This should say SNOVA instead.
Line 50
VoterFactorylLib.Data private _factoriesData;

This should have view functions as its currently an advanced structure without

any introspection.
Lines 64-65

bytes32 public constant COMMUNITY_FEE_WITHDRAWER_ROLE =
keccak256 (' COMMUNITY_FEE_WITHDRAWER');

bytes32 public constant COMMUNITY_FEE_VAULT_ADMINISTRAT-
OR = keccak256('COMMUNITY_FEE_VAULT_ADMINISTRATOR');

It’s unclear to us why these permissions from the community fee contract are

also exposed here.

Line 88

permissionRegistry = _permissionRegistory;
This should say “registry”.

Lines 95, 100 and 105

modifier GaugeAdmin() {
modifier Governance() {
modifier EpochManagerOrGaugeAdmin() {

GaugeManager Paladin Blockchain Security

https://paladinsec.co

Consider using the naming convention which is snakeCase and starts like

onlyGaugeAdmin.
Lines 132-133

/// @notice Set a new Minter
function setGenesisManager(address _genesisManager)
external GaugeAdmin {

The comment above this function is wrong.
Line 165
uint poollLen = _pool.length;

This length is already used above this declaration. Consider declaring this at

the top of the function and just using the local variable everywhere.
Line 177

function createGaugeWithBonusReward(address _pool,
uint256 _gaugeType, address bonusRewardToken)

Consider removing the _gaugeType parameter as this is only supposed to

be for the CL gauge. Alternative consider validating that the _gaugeType is
not zero.

Line 185

/// @dev To create stable/Volatile pair gaugeType = 0,
Concentrated liqudity = 1,

This should say “liquidity” instead.

Line 193

address bonusRewardToken = bonusRewardToken;
This seems rather redundant.

Line 225 and 261

if(_gaugeType == 1) {

Consider using else 1if instead.

Line 230

// approve spending for Sthe

Page 90 of 127 GaugeManager Paladin Blockchain Security

https://paladinsec.co

Page 91 of 127

This should say SNOVA instead.

Line 247

// todo: below line will go to ve33 rewarder.

Its unclear what this comment is about.

Line 273

bytes memory alphabet = "0123456789abcdef";

If desired, this can be marked as a constant bytes16 to save gas.
Line 295

/// @dev the function is called by the minter each epoch.
Anyway anyone can top up some extra rewards.

We couldn’t find a way to top up extra rewards for the V2 gauges.
Lines 340-344

address communityVault = algebraPool.communityVault();
uint _balanceToken® = IERC20(_token®).balanceOf(algebra-
Pool.communityVault());

uint _balanceToken1 = IERC20(_token1).balanceOf(algebra-
Pool.communityVault());

The communityVault variable should be re-used to save gas.

Line 371

/// @notice distribute reward onyl for given gauges
This should say “only” instead.

Line 417

/// @dev this function track the gauge index to emit the
correct Sthe amount after the distribution

This should say “tracks” and SNOVA instead.

Line 426

// SupplyIndex will be updated for Killed Gauges as well
so we don't need to udpate index while reviving gauge.

GaugeManager Paladin Blockchain Security

https://paladinsec.co

This should say “update” instead.
Line 462
claimable[_gauge] = 0;

It would be slightly more idiomatic to move this setter up a bit in line with ch-

ecks-effects-interactions. However, since NOVA has no external interactions,
there is no impact.

Line 475

require(isGauge[_gauge], 'DEAD');

This error message is wrong.

Line 488

require(_gauge.code.length > 0, "CODELEN");

This check is unnecessary, as it’s preceded by an isGauge check.

It should also be noted that most setters do a codelength check, but some

setters don’t have this making it rather inconsistent.

Finally, setVoter, setBlackGovernor and setAVM lack events. Some
other functions lack events as well but they seem to still have downstream

events.
Recommendation Consider fixing the typographical issues.

Resolution @ ACKNOWLEDGED

Page 92 of 127 GaugeManager Paladin Blockchain Security

https://paladinsec.co

2.17 GaugeFactory

GaugeFactory is the responsible for deploying new GaugeV2 contracts via its

createGauge function, which can only be called by the configurable GaugeManager
contract.

2.17.1 Privileged Functions

« createGauge [gauge manager]

« setRegistry [owner]

« activateEmergencyMode [emergency council]
« stopEmergencyMode [emergency council]

« setDistribution [owner or GAUGE_ADMINs]

« setGaugeManager [owner or GAUGE_ADMINs]

2.17.2 Issues & Recommendations

No issues found.

Page 93 of 127 GaugeFactory Paladin Blockchain Security

https://paladinsec.co

2.18 GaugeV/2

GaugeV2 is the main rewarder contract for all V2 (basic and stable) pairs (*LPs”) within the

system. Every epoch, the GaugeManager forwards a number of emissions to each LP’s
gauge that is proportional to the amount of voting escrow votes for the gauge.

These emissions are then distributed over the subsequent epoch to all LP stakers of the

gauge, proportional to their portion of the total LP staked within the gauge.

Even though GaugeV?2 is a fork of the established Thena gauge, some changes were made.

An emergency mode can be enabled by the owner that prevents further deposits into the

gauge and only allows the calling of emergencyWithdraw. This should be taken into
careful consideration by vaults and other contracts building on top of the contracts.

Finally, the claimFees function can be called by anyone, which claims the underlying

swap fees on the staked LP tokens. These fees are subsequently fully sent to the in-

ternal_bribe contract as compensation to the voters who voted that this gauge should
receive emissions.

All rewards will be distributed by the time the epoch is finished. This means that between the
time the new epoch starts and its rewards are distributed, a brief period without any rewards
will exist. This has been communicated and it was confirmed that new epoch emissions will

be distributed quickly.

2.18.1 Privileged Functions

« setDistribution [owner]

« activateEmergencyMode [owner]
+ stopEmergencyMode [owner]

« transferOwnership [owner]

« renounceOwnership [owner]

Page 94 of 127 GaugeV2 Paladin Blockchain Security

https://paladinsec.co

2.18.2 Issues & Recommendations

Issue #53

Severity

Description

Recommendation

Resolution

Issue #54

Severity

Description

Recommendation

Resolution

Page 95 of 127

A small amount of rewardToken dust will accumulate in the gauge

INFORMATIONAL

The GaugeV2 contract does various operations within its reward distribution

and notifyRewardAmount which can contain a small rounding error. This
rounding error accumulates as a reward token balance within the gauge which

cannot be withdrawn.

Consider whether this is an issue. As long as the reward token has a small
nominal value (a high number of decimals), the amount stuck within the gauge

will be small enough to ignore.

& RESOLVED
The client has confirmed that this dust will never amount to any real
value for the tokens they add, no changes were made.

The GaugeV2 does not support various special ERC-20 tokens such as
fee-on-transfer tokens

INFORMATIONAL

The deposit function in GaugeV2 does not support fee-on-transfer tokens as
it assumes the full amount requested is received by the gauge. This limitation
could result in some users being unable to withdraw their full balances if such
tokens were used for staking. Additionally, other special ERC-20 tokens, such

as rebasing tokens, are not directly supported by the gauge.

Regarding reward accumulation precision, the current 1e18 precision might
cause issues for sub-tokens with extremely large or small supplies. However,

this precision level is generally a reasonable trade-off and is commonly used.

This issue is rated informational rather than low severity, since the gauges are
primarily intended for LP tokens, which typically do not exhibit these special

behaviors.

Consider whether there’s any plan to ever add such tokens to a gauge. If
so- consider using a before-after pattern within the deposits to support
fee-on-transfer tokens. If other types of fringe tokens need to be supported,
consider discussing this with us as we can recommend solutions tailored to

the specific token type.
& RESOLVED

The client has indicated they will coordinate with the teams of the

fee-on-transfer tokens to ensure that the SuperNova tokens are

GaugeV2 Paladin Blockchain Security

https://paladinsec.co

Issue #55

Severity

Description

Page 96 of 127

whitelisted from the fee, before adding these tokens. No other special
tokens will be added.

Typographical issues and gas optimizations

INFORMATIONAL

Line 15
interface IRewarder ({

It's considered best practice to keep interfaces in separate solidity files and

actually inherit from them. Currently this interface is not directly inherited

within the GaugeExtraRewarder, which could lead for the interface to no
longer match if changes are made.

Line 27

address public internal_bribe;

The internal_bribe can now be marked as immutable.
Line 35 and 39

address public VE;

This variable appear unused internally, and can likely be removed unless they

are used by a dependent contract.
Line 41 and 217

mapping(address => uint256) public maturityTime;
require(block.timestamp >= maturityTime[msg.sender],
"IMATURE") ;

These sections are unused and can be removed.
Line 41 (old)
uint256 public DURATION;

This variable can be marked as immutable to save gas.

Lines 93, 111, 145 and 152

GaugeV2 Paladin Blockchain Security

https://paladinsec.co

Page 97 of 127

require(emergency == false, "EMER");
emergency = false;

require(emergency == false, "EMER");
equire(emergency == true, "EMER");

These statements are unnecessarily verbose. For example require(emer-
gency == true) can be reduced to require(emergency). The setter
to false appears unnecessary as the variable is already false at the time of
deployment. Finally, require(emergency == false) can be simplified
to require(!emergency).

Line 272

function _withdraw(uint256 amount) internal nonReentrant
isNotEmergency updateReward(msg.sender) {

This function is slightly inconsistent with _deposit, which defines an
account address. Consider being consistent and either using msg . sender
in both or in neither.

Line 274
require(_balanceOf(msg.sender) > 0, "ZV");

This check can be strengthened to _balanceOf (msg.sender) >=

amount if desired. In its current state its a rather wasteful operation from
a gas perspective without serving much purpose.

Line 334

function getReward(address _user) public nonReentrant
onlyDistribution updateReward(_user) {

getReward can be marked as external as its not used internally.
Line 384

rewardToken.safeTransferFrom(DISTRIBUTION, address(this-
), reward);

The origin of this transfer can be msg . sender to save a small amount of gas.
This has the additional benefit that code reviewers will be more confident that

this function cannot drain approvals without consent.
Line 399

require(rewardRate <= balance / DURATION, "REWARD_HIGH");

GaugeV2 Paladin Blockchain Security

https://paladinsec.co

The comments above this line explaining it appear outdated, as the situation

they explain is protected against with this requirement still appears possible.

We assume that it’s from a time where there wasn’t a transferFrom within
the function. Furthermore, this check is insufficient as an actual sanity check

given that balance also incorporates user balances for an insufficient token
balance.

Line 415

address _token = address(TOKEN);

It’s unclear why this is cast back to address, given that within all uses this
_token gets cast back to IPair.

Line 419-420

uint256 _feeso
uint256 _fees1 = claimed1l;

claimedo;

These variables appear unnecessary as claimed@ and claimed1 can just
be used directly.

Lines 147 and 155

emit EmergencyActivated(address(this), block.timestamp-
)

emit EmergencyDeactivated(address(this), block.-
timestamp) ;

The arguments of these events are redundant with off-chain metadata always

attached to events.

Finally, setDistribution, setGaugeRewarder, setInternalBribe,
setGenesisPool and setGenesisPoolManager lack events.

Recommendation Consider fixing the typographical issues and gas optimizations.

Resolution @ PARTIALLY RESOLVED

Page 98 of 127 GaugeV2 Paladin Blockchain Security

https://paladinsec.co

2.19 GaugeFactoryCL

GaugeFactoryCL is the contract responsible for deploying GaugeCL instances and is used

by the GaugeManager to do so. When creating a gauge, the eternal farming virtual pool
is also automatically created, which is the actual staking contract for the pool. Due to the

farming plugin that is supposed to be connected on the underlying CL pools, the eternal

farming system will be notified of any position changes.

2.19.1 Privileged Functions

« activateEmergencyMode [emergency council]
+ stopEmeregencyMode [emergency council]

« setDibs [owner or GAUGE_ADMIN]

+ setReferralFee [owner or GAUGE_ADMIN]

+ setGaugeManager [owner or GAUGE_ADMIN]

« setRegistry [owner]

« setAlgebraPoolApi [owner]

« transferOwnership [owner]

* renounceOwnership [owner]

Page 99 of 127 GaugeFactoryCL Paladin Blockchain Security

https://paladinsec.co

2.19.2 Issues & Recommendations

Issue #56

Severity

Description

Recommendation

Resolution

Page 100 of 127

Typographical issues

INFORMATIONAL

Lines 19 and 25

interface IGaugeCL {
interface ICustomPoolDeployer {

It is recommended to move these interfaces to a separate file, as this follows
best practice for modularity and maintainability. Additionally, consider
having the actual contract implementations explicitly inherit their corre-
sponding interfaces. This ensures that the contracts fully comply with the
declared interface specifications and helps catch discrepancies during com-

pilation.

Line 47

dibsPercentage = 9;

This appears unnecessary. Though it is no problem either.
Lines 56 and 61

require(owner() == msg.sender, 'not owner');

Consider simply marking the function as onlyOwner instead, as is common
practice.

Line 72
return last_gauge;
This value is unnecessarily fetched from storage.

Finally, all of the setters lack events.

Consider fixing the typographical issues.

@ ACKNOWLEDGED

GaugeFactoryCL Paladin Blockchain Security

https://paladinsec.co

2.20 GaugeCL

GaugeCL is a contract similar to GaugeV2. However, unlike GaugeV2, it simply acts as an
interface into Algebra’s farming mechanism. Users are still free to fully bypass this gauge

and directly interact with Algebra’s FarmingCenter.

According to the team, GaugeCL mainly exists as a compatible interface with the other
gauges, allowing dependency systems to easily interact with multiple types of gauges

without having to learn about how Algebra's special farming system works. It is also useful

for the emissions voting system, which can provide emissions to gauges in a unified manner.

GaugeCL is set as the communityFeeReceiver with the community fee set to 100%,
allowing the fees to be routed to the bribes.

The fee percentages in this contract are set to a denominator of 1_0600, which is different

from the denominator of 10_000 used within the normal V2 pools. Care should be taken
with this difference.

2.20.1 Privileged Functions

+ activateEmergencyMode
+ stopEmergencyMode
* transferOwnership

* renounceOwnership

Page 101 of 127 GaugeCL Paladin Blockchain Security

https://paladinsec.co

2.20.2 Issues & Recommendations

Issue #57

Severity

Description

Recommendation

Resolution

Page 102 of 127

Unstaked LP positions do not earn trading fees

LOW SEVERITY

Within the V2 pools, the trading fees accrued by the tokens staked in the

gauge are distributed to the veNOVA voters of those pools. However, the
fees for swaps of LP tokens which are not staked into the gauge, still go the

liquidity provider who owns the LP tokens.

This is very different with the GaugeCL and the SuperNova concentrated
liquidity pools in general. For these pools, the fees always go to the voters,
regardless of whether the LP that generated them is staked into the gauge or

not.

This is because within the SuperNova design, the fees are distributed through
the communityFee which is set to 100%. This means that all fees are
essentially taken as a protocol fee, and then sent to the GaugeCL via the
CommunityVault.

As this seems desired behavior, consider clearly documenting this as the

frontend still currently has a section Trading Fees for the unstaked con-
centrated liquidity positions which simply appears to remain zero.

& RESOLVED

This is desired behavior.

GaugeCL Paladin Blockchain Security

https://paladinsec.co

2.2'1 BribeFactoryVs

BribeFactoryV3 is responsible for deploying the Bribe contract instances for each

gauge. During gauge creation within the GaugeManager, the bribe factory will be called
to deploy the internal and external bribes for the gauge.

BribeFactoryVa3 also has some governance functionality to perform administrative tasks
on the bribes, such as draining their reward tokens.

2.21.1 Privileged Functions

« createBribe [gaugeManager or owner]
- setVoter [owner]

« setPermissionsRegistry [owner]

« setTokenHandler [owner]

« setBribeVoter [owner]

+ setBribeMinter [owner]

« setBribeOwner [owner]
 recoverERC20From [owner]

« recoverERC20AndUpdateData [owner]

* transferOwnership

* renounceOwnership

Page 103 of 127 BribeFactoryV3 Paladin Blockchain Security

https://paladinsec.co

2.21.2 Issues & Recommendations

Issue #58 Typographical issues
Sever’ity © INFORMATIONAL
Description Line 21

address[] internal _bribes;

This array should likely be marked as public for inspection purposes,

alongside a length function.

Line 25

address[] public defaultRewardToken;
This array appears fully unused.

Lines 65-66

_bribes.push(last_bribe);
return last_bribe;

The local lastBribe variable can be used instead to save gas.
Lines 100 and 108
/// @notice set the bribe factory permission registry

This comment is incorrectly copy-pasted and does not actually describe the

function in question.

Several functions lack events, though many of the underlying functions still

emit events.
Recommendation Consider fixing the typographical issues.

Resolution @ PARTIALLY RESOLVED

Page 104 of 127 BribeFactoryV3 Paladin Blockchain Security

https://paladinsec.co

2.22 Bribe

The Bribe contract is linked twice to each gauge within the SuperNova system: an internal

bribe and an external bribe. When voters vote for the gauge through VoterV3, the two
bribes of that gauge are notified of the vote.

At the end of each epoch, voters can then claim any rewards which have accumulated within

the Bribe contract. For the internal bribe, this is always the swap fees that were generated
(all swap fees for CL pools and specifically the swap fees of the tokens staked in the gauge

for the V2 pools), while for the external bribe this is any bribes which protocol bribes send
into that contract. This allows token owners to persuade voters to vote on their protocol's

token's pools by adding additional incentive alongside the swap fees for voting on that pool.

Similar to most of the other reward distributors, rewards can become stuck if no one actually

stakes into the distributor (Bribe, Gauge, etc.). If the total number of stakers is zero,
rewards remain permanently unclaimed as the only fallback mechanism is the owner of the

Bribe taking them out.

Even though bribe tokens may be added over time, they can never be removed again. This
appears to be by design.

2.22.1 Privileged Functions

* recoverERC20AndUpdateData [owner or bribeFactory]
« emergencyRecoverERC20 [owner or bribeFactory]

- setVoter [owner or bribeFactory]

« setGaugeManager [owner or bribeFactory]

« setMinter [owner or bribeFactory]

« setOwner [owner or bribeFactory]

Page 105 of 127 Bribe Paladin Blockchain Security

https://paladinsec.co

2.22.2 Issues & Recommendations

Issue #59

Severity

Description

Recommendation

Resolution

Page 106 of 127

Bribe reward claiming will erroneously send the reward to the AVM instead
of the actual NFT owner if the NFT is owned by the AVM

@ MEDIUM SEVERITY

Lines 266-271

function getReward(uint256 tokenId, address[] memory
tokens) external nonReentrant {
address _owner = IVotingEscrow(ve).ownerOf(tokenId);
if(IAutoVotingEscrowManager (avm) .tokenIdToAVMId(token-
Id) > 0) A
uint idx = IAutoVotingEscrowManager (avm).tokenIdToA-
VMId(tokenId)-1;
TAutoVotingEscrow[] memory avmList = IAutoVotingEsc-
rowManager (avm) .getAVMs() ;
_owner = address(avmList[idx]);

The getReward function has a special exception that allows for claiming
rewards for NFTs which are owned by the auto-voting mechanism. In this

special exception, the rewards should be sent to the original NFT owner, and
not the AVM which currently owns the NFT.

However, due to an error in the refactoring of this exception logic, the reward

is still sent to the auto voting contract instead of to the owner.
We do not believe there is any need to figure out the original AVM contract.

Instead, it is sufficient to call the following on the global AVM after confirming

that the token is owned via the tokenIdToAvmId(tokenId) > © check.
_owner = TAutoVotingEscrowManager(avm).getOriginalOwner-
(tokenId);

@ RESOLVED

AVMs have been fully removed.

Bribe Paladin Blockchain Security

https://paladinsec.co

Issue #60

Severity

Description

Recommendation

Resolution

Issue #61

Severity

Description

Recommendation

Resolution

Page 107 of 127

Tokens with a fee on transfer are not supported as bribe rewards

LOW SEVERITY

The notifyRewardAmount function will operate incorrectly and add too
many rewards compared to what the contract receives if the token has a fee

on transfer.

Consider whether this is an issue; if not, consider documenting that tokens
with a fee on transfer should whitelist the bribe and all other contracts (as

most of the codebase does not support these tokens).

If it is an issue, consider using a before-after pattern.

@& RESOLVED
The client has indicated they will coordinate with the teams of these
tokens to ensure that the SuperNova tokens are whitelisted from the

fee, before adding these tokens.

The contract does not support a ve token with a supply larger than 2**128

INFORMATIONAL

Line 238 (example)

votingSupplyPlots[nPlots - 1] = VotingSupplyPlot(uint128-
(totalSupply), ts);

Throughout the contract, the total amount of votes is cast down to uint128.
This will cause the contract to break if this variable is ever exceeded.

This issue is raised informationally as many other contracts break once a
token has a supply higher than 128 bits. Furthermore, the SuperNova token

currently has a supply significantly lower than this number.

Consider using a larger type for the token values. Given that this contract is
deployed on a cheap network we recommend using a full uint256 for both

the timestamp and the token balances.

& RESOLVED

The client has indicated they will not have such a token.

Bribe Paladin Blockchain Security

https://paladinsec.co

Issue #62

Severity

Description

Recommendation

Resolution

Issue #63

Severity

Description

Recommendation

Resolution

Page 108 of 127

Contract does not support reward tokens with a very high supply

INFORMATIONAL

Line 122

reward += (cp@.balanceOf * tokenRewardsPerEpoch|[_reward-
Token][_currTs]) / _supply;

This line of code may fail due to overflow if the reward is very high. This

appears rather unlikely to us as not many such tokens exist.

Consider failing early on notifyRewardAmount instead, this avoids the
unhappy realisation that a bribe is not claimable.

@ ACKNOWLEDGED

Typographical issues

INFORMATIONAL

Line 112

uint256 _currTs = BlackTimelLibrary.epochStart(lastEarn|-
_rewardToken][tokenId]);

Since the lastEarn now always appears to be aligned to the epochStart,
this extra operation seems unnecessary.

Consider fixing the typographical issues.

@ ACKNOWLEDGED

Bribe Paladin Blockchain Security

https://paladinsec.co

2.25 CustomPoolDeployer

CustomPoolDeployer is responsible for deploying new Algebra pools within the
SuperNova system. Only pools deployed by it will be supported within the SuperNova

system. If pools are created directly without using this deployer, they should not be listed

on the SuperNova website, nor be used for gauge rewards.

CustomPoolDeployer is upgradeable, meaning that the proxy owner can fully change its
functionality. the proxy admin should be safeguarded extremely carefully, ideally behind a

secure multi-signature wallet consisting of trusted, independent parties.

2.23.1 Privileged Functions

« createCustomPool [owner or authorizedAccounts]
« setPluginForPool [owner or authorizedAccounts]
« setPlugin [owner or authorizedAccounts]

« setPluginConfig [owner or authorizedAccounts]
« setFee [owner or authorizedAccounts]

« setCommunityFee [owner or authorizedAccounts]
+ setAlgebraFeeRecipient [owner]

« setAlgebraFeeManager [owner]

« setAlgebraFeeShare [owner]

« setAlgebraFarmingProxyPluginFactory [owner]

« setAlgebraFactory [owner]

« setAlgebraPluginFactory [owner]

« addAuthorizedAccount [owner]

« removeAuthorizedAccount [owner]

« transferOwnership [owner]

* renounceOwnership [owner]

Page 109 of 127 CustomPoolDeployer Paladin Blockchain Security

https://paladinsec.co

2.23.2 Issues & Recommendations

No issues found.

Page 110 of 127 CustomPoolDeployer Paladin Blockchain Security

https://paladinsec.co

2.24 PermissionsRegistry

PermissionsRegistry is the main role-based access-control contract for the system.
It defines many of the governance roles and allows for the team to assign these roles

to accounts. These accounts can then call various governance functions throughout the

system.

2.24.1 Privileged Functions

addRole [blackMultisig]

« removeRole [blackMultisig]

« setRoleFor [blackMultisig]

« removeRoleFrom [blackMultisig]

« setEmergencyCouncil [blackMultisig or emergencyCouncil]
« setBlackTeamMultisig [blackTeamMultisig]

« setBlackMultisig [blackMultisig]

2.24.2 Issues & Recommendations

No issues found.

Page 111 of 127 PermissionsRegistry Paladin Blockchain Security

https://paladinsec.co

2.25 TokenHandler

TokenHandler is acentral registry which keeps track of whitelisted tokens, veNFT ids and
whitelisted connector tokens. It also keep track of various other things. Small changes to

the governance roles were made.

2.25.1 Privileged Functions

« whitelistTokens [GOVERNANCE]

« whitelistToken [GOVERNANCE]

* blacklistTokens [GOVERNANCE]

« blackListToken [GOVERNANCE]

« whitelistNFT [GOVERNANCE]

* blacklistNFT [GOVERNANCE]

« whitelistConnectors [GOVERNANCE]
« whitelistConnector [GOVERNANCE]
« blacklistConnector [GOVERNANCE]
+ setBucketType [GOVERNANCE]

« updateTokenVolatilityBucket [GOVERNANCE]
+ setPermissionsRegistry [OWNER]

« transferOwnership [OWNER]

« renounceOwnership [OWNER]

2.25.2 Issues & Recommendations

No issues found.

Page 112 of 127 TokenHandler Paladin Blockchain Security

https://paladinsec.co

2.26 BlackTimeLibrary

BlackTimelLibrary is a simple shared utility used by several contracts.

The current epoch length is set to 7 days and is aligned to UNIX timestamps.

The only changes were the removal of various functions. No issues were found with this

removal.

2.26.1 Privileged Functions

None.

2.26.2 Issues & Recommendations

No issues found.

Page 113 of 127 BlackTimeLibrary Paladin Blockchain Security

https://paladinsec.co

2.27 BlackholePairAPIV2

BlackholePairAPIV2 is a utility contract used for the frontend. It provides several utility
functions to display information to the frontend.

The only changes to this contract were removals of functionality that are no longer present.

No issues were found with these removals.

2.27.1 Privileged Functions

+ setOwner

+ setVoter

+ setGaugeManager

+ setAlgebraFactory
* setQuoterV2

+ setAlgebraPoolAPI

* setPairFactory

2.27.2 Issues & Recommendations

No issues found.

Page 114 of 127 BlackholePairAPIV2 Paladin Blockchain Security

https://paladinsec.co

2.28 velNFTAPI

veNFTAPI is a utility contract used for the frontend. It provides several utility functions to
display information to the frontend.

The final version of this contract where the AVM was already removed was audited, which

is a later version compared to the initial commit from the preliminary commit.

2.28./1 Privileged Functions

+ setOwner

+ setVoter

+ setGaugeManager

* setGaugeFactory

* setGaugeFactoryCL
+ setRewardDistro

+ setPairAPI

 setPairFactory

Page 115 of 127 veNFTAPI Paladin Blockchain Security

https://paladinsec.co

2.28.2 Issues & Recommendations

Issue #64 Typographical issues
Sevel'ity INFORMATIONAL
Description hasVotedForEpoch may not always be set to true — e.g., for poke it will

not be. Also, it will be set to true if vote is called with an empty array or with
amounts rounding to zero. In this case no real voting occurs but it still gets

set to zero. It is not necessary to fix this as this is a frontend contract.

setGaugeFactoryCL lacks an event. All unchanged setters lack one as
well.

Recommendation Consider fixing the typographical issues.

Resolution @ ACKNOWLEDGED

Page 116 of 127 veNFTAPI Paladin Blockchain Security

https://paladinsec.co

2.29 Math

The Math library provides the min, max and sqrt functions which are used by various
contracts. The min and max functions are trivially correct, while the sqrt functionis a
direct port of the Uniswap V2 sqrt math function, with the most notable change being

that it is now defined in 0. 8 meaning that any overflow or divisions are now checked for
overflow and division by zero, consuming slightly more gas.

The library also defines cbrt but this function is fully unused.

We recommend users of this library to keep the rounding behavior in mind for these two

root functions.

2.29./1 Privileged Functions

None.

2.29.2 Issues & Recommendations

No issues found.

Page 117 of 127 Math Paladin Blockchain Security

https://paladinsec.co

2.50 AlgebraVaultFactory

The standard AlgebraVaultFactoryStubisreplaced with a custom factory. The original
factory simply returns the same community vault for all newly deployed pools. Due to the

way SuperNova works, the team wants to have individual vaults for each pair. This allows

them to accurately track fees and send them to the gauges.

2.30.1 Privileged Functions

+ setOwner

2.30.2 Issues & Recommendations

No issues found.

Page 118 of 127 AlgebraVaultFactory Paladin Blockchain Security

https://paladinsec.co

2.531 CustomPluginV1Factory and Custo-
mPluginVV2Factory

The client has extended the V1 and V2 plugin factories of Algebra with a simple extension
contract that allows for deploying a plugin to existing pools. This was needed to easily

retrofit the existing Algebra plugins and their factories in the custom deployer of the client.

2.531.1 Privileged Functions

« createPluginForExistingCustomPool [customPoolDeployer or POOLS_A-
DMINISTRATION_ROLE]

« (base privileged functions)

Page 119 of 127 CustomPluginV1Factory and CustomPluginV2Factory Paladin Blockchain Security

https://paladinsec.co

2.31.2 Issues & Recommendations

Issue #65 Typographical issues
Severity @ INFORMATIONAL
Description Line 15
require(msg.sender == customPoolDeployer || factory.-

hasRoleOrOwner (factory.POOLS_ADMINISTRATOR_ROLE(), msg.-
sender), 'Only deployer or admin');

Consider storing the role as a constant instead.
Recommendation Consider fixing the typographical issues.

Resolution @ ACKNOWLEDGED

Page 120 of 127 CustomPluginV1Factory and CustomPluginV2Factory Paladin Blockchain Security

https://paladinsec.co

2.52 AlgebraBasePluginV/3

The AlgebraBasePluginV3 is a slight rewrite of the AlgebraBasePluginV1-

, integrating the SecurityPlugin. It hooks into the security plugin for swaps, flashloans,
liquidity additions and liquidity removals. This allows for the team to disable all of these

four actions, or only allow for liquidity removals.

2.52.1 Privileged Functions

« setSecurityRegistry [plugin factory or ALGEBRA_BASE_PLUGIN_MANAGER
]
« changeFeeConfiguration [ALGEBRA_BASE_PLUGIN_MANAGER]

Page 121 of 127 AlgebraBasePluginV3 Paladin Blockchain Security

https://paladinsec.co

2.32.2 lIssues & Recommendations

Issue #66

Severity

Description

Recommendation

Resolution

Page 122 of 127

Fee collection cannot be paused

INFORMATIONAL

Many of the user-callable pool functions can now be paused in emergencies

by the team through the integration of the SecurityPlugin. However, no
such pausing is possible for fee claiming by users.

If the team wishes to fully disable pools including fee claiming, this is not

possible.

Consider also preventing fee claiming when the pool status is set to
DISABLED.

@ ACKNOWLEDGED
The team has indicated that fee claiming is a low risk path. Fur-
thermore, they have indicated that they’d rather not make intrusive
changes to Algebra, which would be required here. We agree with them
that this would indeed require an intrusive change and understand that

that is not desired.

AlgebraBasePluginV3 Paladin Blockchain Security

https://paladinsec.co

2.55 BasePluginV3Factory

The BasePluginV3Factory is a modified version of the BasePluginV1Factory
allowing for the configuration of a SecurityRegistry alongside with a new function to
deploy plugins for existing pools.

The plugins can be deployed by and for any pool deployer, but only for their own pools.

2.33.1 Privileged Functions

« setDefaultFeeConfiguration [ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTR-
ATOR]

« setFarmingAddress [ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTRATOR]
« setSecurityRegistry [ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTRATOR]

2.33.2 Issues & Recommendations

No issues found.

Page 123 of 127 BasePluginV3Factory Paladin Blockchain Security

https://paladinsec.co

2.54 SecurityPlugin

The SecurityPlugin is an Algebra plugin written by the Algebra team in their
safety-switch extension. |t was added to this scope during the resolution rounds of this audit

to increase the security of the Algebra stack, allowing the team to pause swaps, liquidity

addition and liquidity removal.

The plugin exposes two important internal functions to the main plugin, namely _check-
Status() and _checkStatusOnBurn(). The first check will revert if the configured Se-
curityRegistry has the pool status set to anything other than ENABLED. The secondary
check will still succeed even if the status is set to BURN_ONLY.

The SecurityPlugin can therefore not be used by itself and should be integrated in a
larger parent plugin, in this case the AlgebraBasePluginVs.

2.34.1 Privileged Functions

+ setSecurityRegistry [plugin factory or ALGEBRA_BASE_PLUGIN_MANAGER
]

2.34.2 Issues & Recommendations

No issues found.

Page 124 of 127 SecurityPlugin Paladin Blockchain Security

https://paladinsec.co

2.55 SecurityReqistry

The SecurityRegistry is the central registry for consulting the pool status used by all
the SecurityPlugins. The algebra factory owner can disable all pools at once by setting

the global status to DISABLED or set all pools to BURN_ONLY at once, which only allows
for liquidity removal.

Individual pools can still be overwritten to DISABLED or BURN_ONLY via the set-
PoolsStatuses function. These overwritten statuses will only be used if the global status

is set to ENABLED. This means that as soon as the global status changes from ENABLED, all
individual overwritten statuses are ignored.

2.35.1 Privileged Functions

+ setPoolsStatuses [owner for ENABLED and BURN_ONLY, GUARD for
DISABLED]

« setGlobalStatus [owner for ENABLED and BURN_ONLY, GUARD for DISABLED
]

Page 125 of 127 SecurityRegistry Paladin Blockchain Security

https://paladinsec.co

2.35.2 Issues & Recommendations

Issue #67

Severity

Description

Recommendation

Resolution

Page 126 of 127

setPoolsStatus can be called by anyone if an empty pools array is provided,
increasing the contract’s attack surface

INFORMATIONAL

The access control within the setPoolsStatus triggers on each iteration

over the pools array provided into the function.

This means that if an empty pools array is provided, no access control
occurs and anyone can call the setPoolsStatus function with such a

parameter. The newStatuses parameter can still be non-zero length.

This issue is raised as informational since no state changes are expected

to occur when a malicious actor calls this function with an empty pools
array. However, it needlessly increases the attack surface of the contract. If

a compiler issue ever gets discovered in solidity, leaving functions like this

open increases the risk that this contract can be affected by it, especially

since attackers can still choose newStatuses freely.

Consider revamping _hasAccess to exactly check the authorization once,

based on the maximum privilege required by the newStatuses array. Make
sure that both arrays are enforced to be equal length as well. It could finally be

considered to allow the owner to also be able to set the status to DISABLED,
as right now this is only permitted if they have the GUARD role.

@ ACKNOWLEDGED
Given that this code is forked the client understandably wishes to keep
it unchanged.

SecurityRegistry Paladin Blockchain Security

https://paladinsec.co

Issue #68

Severity

Description

Recommendation

Resolution

Page 127 of 127

Typographical issues

INFORMATIONAL

Line 15

EnumerableSet.AddressSet private overriddenPools;

This enumerable set lacks view functions. This prevents other contracts from
using this data. As this set may only serve an internal purpose, keeping it
private may also be desired.

Lines 51-52

bool _isPoolStatusOverrided = isPoolStatusOverrided;
if (_isPoolStatusOverrided) {

It’s unclear to us why this exception case is added as it does not seem to

save significant gas. The shortcut it makes still requires a read from storage
and the outcome it leads to seems identical to the outcome without such an
exception case. We are also unsure why the storage variable gets cached into

_1sPoolStatusOverrided even though it’s only used once on the next
line.

Consider fixing the typographical issues.
@ ACKNOWLEDGED

Given that this code is forked the client understandably wishes to keep
it unchanged.

SecurityRegistry Paladin Blockchain Security

https://paladinsec.co

