
Smart Contract
Security Assessment
Final Report

For Supernova
14 Feb 2026

paladinsec.co info@paladinsec.co

https://paladinsec.co
mailto:info@paladinsec.co


Table of Contents
Table of Contents 2

Disclaimer 7

1 Overview 8

    1.1 Summary 8

    1.2 Contracts Assessed 10

    1.3 Findings Summary 12

        1.3.1 Global 13

        1.3.2 SuperNova 13

        1.3.3 MinterUpgradeable 13

        1.3.4 RewardsDistributor 13

        1.3.5 PairFactory 14

        1.3.6 Pair 14

        1.3.7 PairFees 14

        1.3.8 PairGenerator 14

        1.3.9 PairBootstrapper 15

        1.3.10 RouterV2 15

        1.3.11 RouterHelper 15

        1.3.12 VotingEscrow 16

        1.3.13 VotingBalanceLogic 16

        1.3.14 VotingDelegationLib 16

        1.3.15 VoterV3 17

        1.3.16 GaugeManager 17

        1.3.17 GaugeFactory 17

        1.3.18 GaugeV2 17

        1.3.19 GaugeFactoryCL 18

        1.3.20 GaugeCL 18

        1.3.21 BribeFactoryV3 18

        1.3.22 Bribe 18

        1.3.23 CustomPoolDeployer 18

        1.3.24 PermissionsRegistry 19

Page 2 of 127 Paladin Blockchain Security

https://paladinsec.co


        1.3.25 TokenHandler 19

        1.3.26 BlackTimeLibrary 19

        1.3.27 BlackholePairAPIV2 19

        1.3.28 veNFTAPI 19

        1.3.29 Math 19

        1.3.30 AlgebraVaultFactory 19

        1.3.31 CustomPluginV1Factory and CustomPluginV2Factory 20

        1.3.32 AlgebraBasePluginV3 20

        1.3.33 BasePluginV3Factory 20

        1.3.34 SecurityPlugin 20

        1.3.35 SecurityRegistry 20

2 Findings 21

    2.1 Global 21

        2.1.2 Issues & Recommendations 21

    2.2 SuperNova 23

        2.2.1 Privileged Functions 23

        2.2.2 Issues & Recommendations 24

    2.3 MinterUpgradeable 25

        2.3.1 Privileged Functions 25

        2.3.2 Issues & Recommendations 27

    2.4 RewardsDistributor 29

        2.4.1 Privileged Functions 29

        2.4.2 Issues & Recommendations 30

    2.5 PairFactory 31

        2.5.1 Privileged Functions 31

        2.5.2 Issues & Recommendations 32

    2.6 Pair 34

        2.6.1 Privileged Functions 35

        2.6.2 Issues & Recommendations 36

    2.7 PairFees 41

        2.7.1 Privileged Functions 41

        2.7.2 Issues & Recommendations 42

    2.8 PairGenerator 43

Page 3 of 127 Paladin Blockchain Security

https://paladinsec.co


        2.8.1 Privileged Functions 43

        2.8.2 Issues & Recommendations 44

    2.9 PairBootstrapper 45

        2.9.1 Privileged Functions 45

        2.9.2 Issues & Recommendations 46

    2.10 RouterV2 48

        2.10.1 Privileged Functions 48

        2.10.2 Issues & Recommendations 49

    2.11 RouterHelper 55

        2.11.1 Privileged Functions 55

        2.11.2 Issues & Recommendations 56

    2.12 VotingEscrow 62

        2.12.1 Privileged Functions 62

        2.12.2 Issues & Recommendations 64

    2.13 VotingBalanceLogic 69

        2.13.1 Privileged Functions 69

        2.13.2 Issues & Recommendations 70

    2.14 VotingDelegationLib 72

        2.14.1 Privileged Functions 72

        2.14.2 Issues & Recommendations 73

    2.15 VoterV3 77

        2.15.1 Privileged Functions 77

        2.15.2 Issues & Recommendations 79

    2.16 GaugeManager 82

        2.16.1 Privileged Functions 82

        2.16.2 Issues & Recommendations 84

    2.17 GaugeFactory 93

        2.17.1 Privileged Functions 93

        2.17.2 Issues & Recommendations 93

    2.18 GaugeV2 94

        2.18.1 Privileged Functions 94

        2.18.2 Issues & Recommendations 95

    2.19 GaugeFactoryCL 99

Page 4 of 127 Paladin Blockchain Security

https://paladinsec.co


        2.19.1 Privileged Functions 99

        2.19.2 Issues & Recommendations 100

    2.20 GaugeCL 101

        2.20.1 Privileged Functions 101

        2.20.2 Issues & Recommendations 102

    2.21 BribeFactoryV3 103

        2.21.1 Privileged Functions 103

        2.21.2 Issues & Recommendations 104

    2.22 Bribe 105

        2.22.1 Privileged Functions 105

        2.22.2 Issues & Recommendations 106

    2.23 CustomPoolDeployer 109

        2.23.1 Privileged Functions 109

        2.23.2 Issues & Recommendations 110

    2.24 PermissionsRegistry 111

        2.24.1 Privileged Functions 111

        2.24.2 Issues & Recommendations 111

    2.25 TokenHandler 112

        2.25.1 Privileged Functions 112

        2.25.2 Issues & Recommendations 112

    2.26 BlackTimeLibrary 113

        2.26.1 Privileged Functions 113

        2.26.2 Issues & Recommendations 113

    2.27 BlackholePairAPIV2 114

        2.27.1 Privileged Functions 114

        2.27.2 Issues & Recommendations 114

    2.28 veNFTAPI 115

        2.28.1 Privileged Functions 115

        2.28.2 Issues & Recommendations 116

    2.29 Math 117

        2.29.1 Privileged Functions 117

        2.29.2 Issues & Recommendations 117

    2.30 AlgebraVaultFactory 118

Page 5 of 127 Paladin Blockchain Security

https://paladinsec.co


        2.30.1 Privileged Functions 118

        2.30.2 Issues & Recommendations 118

    2.31 CustomPluginV1Factory and CustomPluginV2Factory 119

        2.31.1 Privileged Functions 119

        2.31.2 Issues & Recommendations 120

    2.32 AlgebraBasePluginV3 121

        2.32.1 Privileged Functions 121

        2.32.2 Issues & Recommendations 122

    2.33 BasePluginV3Factory 123

        2.33.1 Privileged Functions 123

        2.33.2 Issues & Recommendations 123

    2.34 SecurityPlugin 124

        2.34.1 Privileged Functions 124

        2.34.2 Issues & Recommendations 124

    2.35 SecurityRegistry 125

        2.35.1 Privileged Functions 125

        2.35.2 Issues & Recommendations 126

Page 6 of 127 Paladin Blockchain Security

https://paladinsec.co


Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the 
integrity of and highlight any vulnerabilities or errors, intentional or unintentional, that may 
be present in the codes that were provided for the scope of this audit. This audit report does 
not constitute agreement, acceptance or advocation for the Project that was audited, and 
users relying on this audit report should not consider this as having any merit for financial 
advice in any shape, form or nature. The contracts audited do not account for any economic 
developments that may be pursued by the Project in question, and that the veracity of the 
findings thus presented in this report relate solely to the proficiency, competence, aptitude 
and discretion of our independent auditors, who make no guarantees nor assurance that 
the contracts are completely free of exploits, bugs, vulnerabilities or deprecation of tech-
nologies. Further, this audit report shall not be disclosed nor transmitted to any persons or 
parties on any objective, goal or justification without due written assent, acquiescence or 
approval by Paladin.

All information provided in this report does not constitute financial or investment advice, 
nor should it be used to signal that any persons reading this report should invest their funds 
without sufficient individual due diligence regardless of the findings presented in this report. 
Information is provided ‘as is’, and Paladin is under no covenant to the completeness, 
accuracy or solidity of the contracts audited. In no event will Paladin or its partners, 
employees, agents or parties related to the provision of this audit report be liable to 
any parties for, or lack thereof, decisions and/or actions with regards to the information 
provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to cryp-
tocurrencies are highly volatile and speculative by nature. All reasonable due diligence and 
safeguards may yet be insufficient, and users should exercise considerable caution when 
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate recom-
mendations to the Project team with respect to the rectification, amendment and/or revision 
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the 
sole responsibility of the Project team to sufficiently test and perform checks, ensuring that 
the contracts are functioning as intended, specifically that the functions therein contained 
within said contracts have the desired intended effects, functionalities and outcomes of the 
Project team. Paladin retains the right to re-use any and all knowledge and expertise gained 
during the audit process, including, but not limited to, vulnerabilities, bugs, or new attack 
vectors. Paladin is therefore allowed and expected to use this knowledge in subsequent 
audits and to inform any third party, who may or may not be our past or current clients, 
whose projects have similar vulnerabilities. Paladin is furthermore allowed to claim bug 
bounties from third-parties while doing so.

Page 7 of 127 Paladin Blockchain Security

https://paladinsec.co


1 Overview
This report has been prepared for Supernova on the Ethereum network. Paladin provides a 
user-centred examination of the smart contracts to look for vulnerabilities, logic errors or 
other issues from both an internal and external perspective.

1.1 Summary
Project Name Supernova

URL https://supernova.xyz

Platform Ethereum

Language Solidity

Preliminary BHSmartContracts: 
https://github.com/BlackHoleDEX/SNContracts/pull/1 
(https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4-
974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b7-
69e1d5539207e6c4511)

Algebras Changes: https://github.com/BlackHoleDEX/Algebra/pull/-
10

(the pull request portion until bc84985f65b5f74335987029e41779a-
0b97bd497)

Resolution 1 https://github.com/BlackHoleDEX/SNContracts/compare/f3b5db7a-
1f08a303776b769e1d5539207e6c4511...7b8d79f34259275f98ff4f-
8ba00d971090d76e96

Algebras Changes: https://github.com/BlackHoleDEX/Algebra/pull/-
10

(the pull request portion from bc84985f65b5f74335987029e41779-
a0b97bd497 until 9050b5fa3f62e4a6d67c73c6247b578d5a230499)

Resolution 2 https://github.com/BlackHoleDEX/SNContracts/compare/7b8d79f3-
4259275f98ff4f8ba00d971090d76e96...e06bef8b96e4b888c4e0b6-
cbecdef7a9c28da64b

Resolution 3 https://github.com/BlackHoleDEX/SNContracts/compare/e06bef8b-
96e4b888c4e0b6cbecdef7a9c28da64b...16eb66816844cee0d3955-
14427f5d8b93a2e8027

Resolution 4

Page 8 of 127 Paladin Blockchain Security

https://supernova.xyz
https://github.com/BlackHoleDEX/SNContracts/pull/1
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/SNContracts/compare/d5dabbc4974505e4f8462cae6a88d36820a9de6b...f3b5db7a1f08a303776b769e1d5539207e6c4511
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/SNContracts/compare/f3b5db7a1f08a303776b769e1d5539207e6c4511...7b8d79f34259275f98ff4f8ba00d971090d76e96
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/Algebra/pull/10
https://github.com/BlackHoleDEX/SNContracts/compare/7b8d79f34259275f98ff4f8ba00d971090d76e96...e06bef8b96e4b888c4e0b6cbecdef7a9c28da64b
https://github.com/BlackHoleDEX/SNContracts/compare/e06bef8b96e4b888c4e0b6cbecdef7a9c28da64b...16eb66816844cee0d395514427f5d8b93a2e8027
https://github.com/BlackHoleDEX/SNContracts/compare/16eb66816844cee0d395514427f5d8b93a2e8027...e7b493a7b2c630feba667e010add2dce89660650
https://paladinsec.co


https://github.com/BlackHoleDEX/SNContracts/compare/16eb6681-
6844cee0d395514427f5d8b93a2e8027...e7b493a7b2c630feba667-
e010add2dce89660650

Resolution 5 https://github.com/BlackHoleDEX/SNContracts/compare/e7b493a7-
b2c630feba667e010add2dce89660650...ec90e21201ed4c5c40929-
41f1d5c69b6bf065626

Resolution 6 https://github.com/BlackHoleDEX/SNContracts/compare/ec90e212-
01ed4c5c4092941f1d5c69b6bf065626...a44e5f2a0278dd15f2b23e-
6328a4fc32a0f7d221

Resolution 7 https://github.com/BlackHoleDEX/SNContracts/compare/a44e5f2a0-
278dd15f2b23e6328a4fc32a0f7d221...f8ff2b6a3e65caf30441dbe9-
9c616e38d007b444

Live Match Notes Some minor differences were spotted in the following deployed 
contracts. Paladin has checked them and found no issues with the 
changes.

NonFungiblePositionManager.sol: Name changed from 
Algebra to Supernova

PairFactory.sol: Default fee of Basic Volatility Pools changed from 
0.6% to 0.5%

VoterV3.sol: Max voting limit has changed from 20 to 30.

Page 9 of 127 Paladin Blockchain Security

https://github.com/BlackHoleDEX/SNContracts/compare/16eb66816844cee0d395514427f5d8b93a2e8027...e7b493a7b2c630feba667e010add2dce89660650
https://github.com/BlackHoleDEX/SNContracts/compare/e7b493a7b2c630feba667e010add2dce89660650...ec90e21201ed4c5c4092941f1d5c69b6bf065626
https://github.com/BlackHoleDEX/SNContracts/compare/ec90e21201ed4c5c4092941f1d5c69b6bf065626...a44e5f2a0278dd15f2b23e6328a4fc32a0f7d221
https://github.com/BlackHoleDEX/SNContracts/compare/a44e5f2a0278dd15f2b23e6328a4fc32a0f7d221...f8ff2b6a3e65caf30441dbe99c616e38d007b444
https://paladinsec.co


1.2 Contracts Assessed

Name Contract
Live Code 
Match

SuperNova 0x00da8466b296e382e5da2bf20962d0cb87200c78

MinterUpgradeable 0xfe29ea1348f0990273db5e19ad521e45acda84a2

RewardsDistributor 0xb3410a30af5033af822b8ea5ad3bd0a19490ea97

PairFactory 0x5aef44edfc5a7edd30826c724ea12d7be15bdc30

Pair 0xe3B07bc14A3c96E55f474492F1c1C3324cB9CcFe

PairFees 0x35b842d371fb9fAAEe00AD751016181Ae7eC59A1

PairGenerator 0x42a7a5baafb1818da3a39ce1b97a58799d69bbb8

PairBootstrapper 0x7f8f2b6d0b0aae8e95221ce90b5c26b128c1cb66

RouterV2 0xf0756789a6fb10ce566a24cbf1b6570753d97ec9

RouterHelper 0xd8377aea61c4c4d43bf0588956f4e861720803c6

VotingEscrow 0x4c3e7640b3e3a39a2e5d030a0c1412d80fee1d44

VotingBalanceLogic 0xed686a5b0bf0df5c97f8eabd1b776ae399319847

VotingDelegationLi-
b

VoterV3 0x1c7bf2532dfa34eeea02c3759e0ca8d87b1d8171

GaugeManager 0x19a410046afc4203aece5fbfc7a6ac1a4f517ae2

GaugeFactory 0x66647a19452e98e98a9f479883f241e33016adb0

GaugeV2 0x094BEf1766Eec5Db769be1B31246b60787359052#code

GaugeFactoryCL 0x8d38206e38ec86b14530186aa36cc3b1ed8cd674

GaugeCL 0x40f348C884a872efc6144Db381A83BE8cF250935

BribeFactoryV3 0xeb37f11c573ab01358d5fefb10f5de2b4237344c

Bribe 0x016AC7265C967581227aa6FAc5cF6489D05FC144

CustomPoolDeployer 0x2493b36759fb77e40ef863ca59807a9d7689af4a

PermissionsRegistr-
y

0x344eec31c725187cd026db73ed8805e72967c28d

TokenHandler 0xa1154fe44a3d5c740644b9028e4d68fd876de201

BlackTimeLibrary

BlackholePairAPIV2 0x1fd265236e240f4f4487ae91de589ec88f7535aa

veNFTAPI 0x85dc70913e49e5ebd888ada03034e3be109e5881

Math

AlgebraVaultFactor-
y

0xafc0497f052A3b5274659308D0b875271C03038d

Page 10 of 127 Paladin Blockchain Security

https://paladinsec.co


CustomPluginV1Fact-
ory and 
CustomPluginV2Fact-
ory

AlgebraBasePluginV-
3

0xa665fc4b0C307652Cc7a546FfDC77Ef06fb30660

BasePluginV3Factor-
y

0xdbfd67d12cadb8925c1417ff3638693f2bf99b97

SecurityPlugin 0xa665fc4b0C307652Cc7a546FfDC77Ef06fb30660

SecurityRegistry 0x454e62e725ad5a47931043f7e6369cfbb879bdfd

Page 11 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3 Findings Summary

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

Governance 3 - - 3

High 3 3 - -

Medium 3 3 - -

Low 24 16 1 7

Informational 35 13 7 15

Total 68 35 8 25

Classification of Issues

Severity Description

Governance Issues under this category are where the governance or owners of the protocol 
have certain privileges that users need to be aware of, some of which can result 
in the loss of user funds if the governance’s private keys are lost or if they turn 
malicious, for example.

High Exploits, vulnerabilities or errors that will certainly or probabilistically lead 
towards loss of funds, control, or impairment of the contract and its functions. 
Issues under this classification are recommended to be fixed with utmost 
urgency.

Medium Bugs or issues that may be subject to exploit, though their impact is somewhat 
limited. Issues under this classification are recommended to be fixed as soon 
as possible.

Low Effects are minimal in isolation and do not pose a significant danger to the 
project or its users. Issues under this classification are recommended to be fixed 
nonetheless.

Informational Consistency, syntax or style best practices. Generally pose a negligible level of 
risk, if any.

Page 12 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.1 Global

ID Severity Summary Status

01 The voting and native token mechanisms are configurable, allowing 
the SuperNova team to control the emissions and minting system

02 Lack of error messages for require statements

1.3.2 SuperNova

ID Severity Summary Status

03 Typographical issues

1.3.3 MinterUpgradeable

ID Severity Summary Status

04 Minting logic is upgradeable, allowing the proxy admin to redefine the 
minting logic freely and potentially mint a large unexpected amount 
of supply

05 The function which calculates how much of the mint should go to the 
veNOVA rebase is an approximation and might slightly misbehave in 
edge cases

06 The _initialize function lacks validation on the distribution amounts

07 circulating_supply can be manipulated

1.3.4 RewardsDistributor
No issues found.

Page 13 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.5 PairFactory

ID Severity Summary Status

08 A referral cap was added but setCustomReferralFee remains 
uncapped, potentially bricking swaps when set to an excessive value

09 Swap fees cannot be set to zero

10 Typographical issues and gas optimizations

1.3.6 Pair

ID Severity Summary Status

11 swaps can be blocked by the SuperNova governance

12 Stable pair MINIMUM_LIQUIDITY requirement is lower than Uniswap 
V2’s under very edge-case circumstances

13 Fee precision mechanism may cause the pair to block swaps for tokens 
with an extremely large supply and large amount of generated fees

14 _getAmountOut and all functions relying on it are sometimes slightly 
inaccurate for stable pairs, causing routers to receive slightly fewer 
tokens

15 Several functions do not have a reentrancy lock

16 current() should not be used as an actual TWAP function

17 Typographical issues

1.3.7 PairFees

ID Severity Summary Status

18 Fee mechanism will malfunction for fee-on-transfer tokens, causing 
there to be insufficient fees for everyone

1.3.8 PairGenerator

ID Severity Summary Status

19 Typographical issues

Page 14 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.9 PairBootstrapper

ID Severity Summary Status

20 Lack of deadline for V2 liquidity addition

21 Typographical issues

1.3.10 RouterV2

ID Severity Summary Status

22 addLiquidity frontrunning protection can be bypassed

23 swapPossible check for fee-on-transfer swaps will succeed 
prematurely

24 The add liquidity functions are inefficient for fee on transfer tokens 
and do not properly enforce the minimum amount out for them

25 The swap routes provided are not properly enforced to actually 
contain sensible data

26 The router is not very robust when malicious reentrancy hooks are 
present on tokens within the swap route

27 The requested minimum amount out might not be correctly enforced 
for special tokens

1.3.11 RouterHelper

ID Severity Summary Status

28 Swap prices for stable pairs will mostly return either “0” or “1” due to 
a normalization error

29 getAmountsOut does not handle failures gracefully

30 _calculateStableSwapPrice is slightly vulnerable to overflow reverts

31 _swapRatio fixes have small edge cases which can cause reverts and 
small side-effects in very specific situations

32 getAmountOut will still return a value even if the factory paused V2 
swaps

33 Typographical issues and gas optimizations

Page 15 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.12 VotingEscrow

ID Severity Summary Status

34 NFTs are incorrectly self-delegated during NFT transfers

35 Split can now leave one of the two NFTs with a zero value, an outcome 
which was previously impossible

36 ownerOf does not revert for invalid tokenId inputs

37 Unsafe casts occur throughout the contract which reduces 
code-safety, especially if SUPERNOVAs supply ever increases signif-
icantly

38 Several functions lack reentrancy guards

39 getsmNFTPastVotes seems to calculate the NFT balance twice

40 Typographical issues

1.3.13 VotingBalanceLogic

ID Severity Summary Status

41 Block-based historical balance and total supply functions may not be 
consistent until a snapshot occurs after the provided block

42 Typographical issues

1.3.14 VotingDelegationLib

ID Severity Summary Status

43 Anyone can call the internal moveTokenDelegates and moveAllDele-
gates functions, allowing for exploiters to delegate arbitrarily to their 
own wallets and fully breaking the delegation logic

44 The delegation logic is fundamentally broken in multiple ways, which 
can be abused to DoS VotingEscrow mints and transfers, prevent 
delegations to any wallet and clear a wallet’s delegates at will

45 Typographical issues

Page 16 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.15 VoterV3

ID Severity Summary Status

46 Typographical issues and gas optimizations

1.3.16 GaugeManager

ID Severity Summary Status

47 Gauge distribution amounts may still be inaccurate if a distribution is 
only done after a full epoch has elapsed

48 Manual distributeRewards requires tokens to be manually sent to 
the GaugeManager or else it will use the minter rewards which are 
supposed to be distributed to gauges

49 Factory update functions emit incorrect events

50 Rewards directly sent to Algebra’s reward system will never be 
distributed

51 Once-per-epoch and authorization checks for distributeFees can be 
bypassed to some extent

52 Typographical issues and gas optimizations

1.3.17 GaugeFactory
No issues found.

1.3.18 GaugeV2

ID Severity Summary Status

53 A small amount of rewardToken dust will accumulate in the gauge

54 The GaugeV2 does not support various special ERC-20 tokens such 
as fee-on-transfer tokens

55 Typographical issues and gas optimizations

Page 17 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.19 GaugeFactoryCL

ID Severity Summary Status

56 Typographical issues

1.3.20 GaugeCL

ID Severity Summary Status

57 Unstaked LP positions do not earn trading fees

1.3.21 BribeFactoryV3

ID Severity Summary Status

58 Typographical issues

1.3.22 Bribe

ID Severity Summary Status

59 Bribe reward claiming will erroneously send the reward to the AVM 
instead of the actual NFT owner if the NFT is owned by the AVM

60 Tokens with a fee on transfer are not supported as bribe rewards

61 The contract does not support a ve token with a supply larger than 
2**128

62 Contract does not support reward tokens with a very high supply

63 Typographical issues

1.3.23 CustomPoolDeployer
No issues found.

Page 18 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.24 PermissionsRegistry
No issues found.

1.3.25 TokenHandler
No issues found.

1.3.26 BlackTimeLibrary
No issues found.

1.3.27 BlackholePairAPIV2
No issues found.

1.3.28 veNFTAPI

ID Severity Summary Status

64 Typographical issues

1.3.29 Math
No issues found.

1.3.30 AlgebraVaultFactory
No issues found.

Page 19 of 127 Paladin Blockchain Security

https://paladinsec.co


1.3.31 CustomPluginV1Factory and CustomPluginV2Factory

ID Severity Summary Status

65 Typographical issues

1.3.32 AlgebraBasePluginV3

ID Severity Summary Status

66 Fee collection cannot be paused

1.3.33 BasePluginV3Factory
No issues found.

1.3.34 SecurityPlugin
No issues found.

1.3.35 SecurityRegistry

ID Severity Summary Status

67 setPoolsStatus can be called by anyone if an empty pools array is 
provided, increasing the contract’s attack surface

68 Typographical issues

Page 20 of 127 Paladin Blockchain Security

https://paladinsec.co


2 Findings
2.1 Global
The issues in this section apply to the protocol as a whole, and may pertain to more than one 
contract. Please go through the issues carefully and check them in the relevant contracts.

2.1.2 Issues & Recommendations

Issue #01 The voting and native token mechanisms are configurable, allowing the 
SuperNova team to control the emissions and minting system

Severity

Description The team has taken significant steps to ensure the LP stakes into the pairs 
and gauges are fully decentralized. However, they retain control over various 
other properties of the system such as the minting of the native token and 
the voting mechanism. Many of the peripheral contracts are upgradeable or 
have extensive configurability.

It should also be noted that swaps can be paused by governance.

Recommendation Consider carefully placing all privileged roles behind a carefully-chosen and 
secure multi-signature set-up of independent parties. Consider documenting 
the details of the multi-signature wallet.

Resolution

GlobalPage 21 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #02 Lack of error messages for require statements

Severity

Description MinterUpgradeable::148 (example)

require (epochCount >= TAIL_START);

Throughout the codebase, many require statements lack an appropriate 
error code, making it difficult for off-chain services to determine why a 
transaction reverted.

MinterUpgradeable:23-24

uint public constant MAX_TEAM_RATE = 500;
uint256 public constant TAIL_START = 67;

Throughout the contract, uint and uint256 are used interchangeably. It is 
cleaner to stick to one of the two consistently.

Recommendation Consider including distinct error messages for all the require statements in 
the codebase.

Resolution

GlobalPage 22 of 127 Paladin Blockchain Security

https://paladinsec.co


2.2 SuperNova
The SuperNova token is the native token of the SuperNova system and is minted every 
epoch.

The contract is configured to mint an initial amount of 500,000,000 tokens. Additional 
tokens can be minted by the deployer, and since the subsequent minter contract that 
receives the minter role is upgradeable, the minting schedule will remain adjustable by the 
team through an upgrade.

2.2.1 Privileged Functions

• setMinter [ minter ]

• initialMint [ minter, callable once ]

• mint [ minter ]

SuperNovaPage 23 of 127 Paladin Blockchain Security

https://paladinsec.co


2.2.2 Issues & Recommendations

Issue #03 Typographical issues

Severity

Description Line 6

contract Black is IBlack {

The contract and interface name could be considered misleading as this is 

now the SuperNova token.

Recommendation Consider fixing the typographical issues.

Resolution
This is resolved throughout the codebase.

SuperNovaPage 24 of 127 Paladin Blockchain Security

https://paladinsec.co


2.3 MinterUpgradeable
MinterUpgradeable is the only contract with the minter role on the SuperNova token, 
meaning it is supposed to be the only place where SuperNova tokens get minted.

Every epoch, it expects that someone calls update_period to calculate the emission rate 
for that epoch and distribute it. This function splits the emissions over three destinations:

• Rebase to veNOVA stakers

• Gauge emissions

• Team share (5%)

The proportion of the emissions going to veNOVA holders is inversely proportional to the 
number of veNOVA stakers:

veNOVAAllocation = (100% - stakedInVeNOVA%)^2/2

This means that the rebase quickly diminishes as more people stake in veNOVA, but 
becomes a very strong incentive for staking if not that many people are staking into veNOVA. 
This effect is compounded by the fact that the actual allocation to veNOVA will then be 
split over all veNOVA stakers, meaning that when there are few stakers, the allocation will 
not only be very high, it will also be shared over less stakers. And when there are many 
stakers, the allocation will not only be very small, it will also be shared over all of these 
stakers. At the time of this audit, this allocation is quite small due to the very high number of 

permanently staked veNOVA (the “supermassive permalock”), meaning nearly all emissions 
are forwarded to gauge emissions.

The gauge emissions are then transferred to the gauge manager which is responsible for 
distributing them over the various gauges according to the vote distribution.

As the contract is upgradeable, all of its behavior is fully adjustable by the team which 
means that any minting restrictions such as the maximum team share are only partially 
binding as the team can upgrade the contract with new business logic. Variables such as 

the MAX_TEAM_RATE are thus not very meaningful.

2.3.1 Privileged Functions

MinterUpgradeablePage 25 of 127 Paladin Blockchain Security

https://paladinsec.co


• setTeam [ team ]

• acceptTeam [ pending team ]

• setGaugeManager [ team ]

• setTeamRate [ team ]

• setRewardDistributor [ team ]

• transferOwnership [ owner, unused ]

• renounceOwnership [ owner, unused ]

MinterUpgradeablePage 26 of 127 Paladin Blockchain Security

https://paladinsec.co


2.3.2 Issues & Recommendations

Issue #04 Minting logic is upgradeable, allowing the proxy admin to redefine the 
minting logic freely and potentially mint a large unexpected amount of supply

Severity

Description Even though the minter describes a clear supply schedule, the minter is up-
gradeable. If a malicious actor ever upgrades it with a malicious implementa-

tion, they can potentially mint a very large amount of NOVA and subsequently 
sell it.

Recommendation Consider adding safeguards to NOVA to prevent it from suddenly minting very 
large amounts of supply. Consider safeguarding the proxy behind a secure 
multisig composed of trusted, independent parties.

Resolution

Issue #05 The function which calculates how much of the mint should go to the veNOVA 
rebase is an approximation and might slightly misbehave in edge cases

Severity

Description The portion of the weekly mint going to the veNOVA holders is based on the 
following equation:

unstakedNOVA%²/2

This means that if no NOVA is staked within the voting escrow contract, 50% 
of all emissions go to veNOVA rebases. This is not very sensible as no one 
would be able to claim it. If all NOVA are staked, 0% would go to rebases. If 
half are staked, 12.5% goes to rebases.

There are a few problems with the implementation of this math — there is no 

exception for when the _veTotal is zero, as in this case the rebaseAmount 
should be zero.

Next, _veTotal is based on a different epoch as its proportion to the 
blackSupply, which is the total NOVA tokens. This means that due to timing 
mismatches, unstakedNOVA in the above equation could theoretically be 
negative. This is extremely unlikely in practice but if it happened, calcu-
late_rebase and all minting would be paused until the underflow stops 
occuring.

Recommendation Consider documenting this, and making sure that there is always enough 
liquidity staked and unstaked in the voting escrow contract to ensure these 
edge cases cannot occur.

Resolution

MinterUpgradeablePage 27 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #06 The _initialize function lacks validation on the distribution amounts

Severity

Description _initialize is the secondary initializer called at a later time from the initial 
one. It mints and distributes veNOVA tokens to a set of claimants.

This distribution logic allows the caller to specify the number of NOVA to mint 
to the minter, but there is no validation that this number is equal to the sum 
of claims minted.

Underscoring function names is typically only done for internal functions. On 

a side-note, the NOVA approval to _ve can also be reset after creating all the 
locks, to give further confidence to users seeing an open approval from the 
minter.

Recommendation Consider whether over-minting is desired, such as if the team wishes to leave 
a remainder within the minter. If not, consider validating that the minted 
amount is equal to the sum of claims.

Resolution

Issue #07 circulating_supply can be manipulated

Severity

Description MinterUpgradeable exposes a circulating_supply view function. 
This function is not used significantly.

If a future contract starts relying on it, we want to caution such usage as the 

value it supplies can be manipulated. For example, it subtracts any NOVA 
staked into the voting escrow contract from the supply. But such stakes 
can be made with as short as a single second duration. This means that 

someone might borrow NOVA, stake it for 1 second, and significantly decrease 
circulating_supply.

Recommendation Consider either removing this function or documenting this.

Resolution

MinterUpgradeablePage 28 of 127 Paladin Blockchain Security

https://paladinsec.co


2.4 RewardsDistributor
The RewardsDistributor is a small contract responsible for distributing the weekly 
rebase to voting escrow stakers. Every week, a small portion of the weekly emissions is 

distributed to voting escrow NFT holders directly, as described in the MinterUpgrade-
able contract description. This distribution can then be claimed by voting escrow stakers 
and it will be compounded into their stake, essentially rebasing the stake amount to a higher 
value. If the stake has expired, the rebase can be claimed as native tokens.

Rebases are assigned to epochs whenever checkpoint_token gets called with new 
rewards. This is done by MinterUpgradeable, but can include any tokens donated to the 
contract, including ones sent there directly. It should be noted that the frequency of check-
point_token being called will affect which epoch rewards are assigned to. Assuming a 
schedule where the contract receives all rewards during epoch 1 and checkpoint_token 
is only called in epoch 3, all these rewards will be equally divided over the three epochs, 
even though they are for epoch 1. This is by design.

As always, the staking contract is not very robust against the case where there are no stakers. 
In that case, rewards may end up being unclaimed and stuck until withdrawn. This is by 
design.

It should be noted that the RewardsDistributor uses the historical balances of 
tokenIds to distribute, but distributes to the current owner. This is particularly important 
if a token is removed through a merge. In that case, the owner of the old tokenId is wiped 
and the rewards for that id can never be claimed. A similar issue occurs when claiming after 

the tokenId was withdrawn. Users should keep this in mind and ensure they claim their 
rebases before performing such actions.

It should be noted that anyone can claim the rebase for an NFT, not just the token owner or 
an approved address. This cannot be disabled.

This contract was audited under the assumption that the token implementation is the 

SuperNova token we audited, and that the VotingEscrow implementation is the one we 
audited as well. This is because we assume no reentrancy in claim, but with non-standard 
tokens and implementations that could be possible. Exercise caution if you are using a 
forked protocol.

2.4.1 Privileged Functions

RewardsDistributorPage 29 of 127 Paladin Blockchain Security

https://paladinsec.co


• setDepositor

• setOwner

• withdrawERC20

2.4.2 Issues & Recommendations

No issues found.

RewardsDistributorPage 30 of 127 Paladin Blockchain Security

https://paladinsec.co


2.5 PairFactory
PairFactory is the entry point for both basic and stable V2 pair deployment. Pairs can 
only be created by authorized accounts. The factory is also responsible for configuring 
various fee-related values for the pairs, such as their fee rate and the referral fee recipient.

Upgrading the PairFactory with an improperly configured implementation can block 
swaps on the pair.

2.5.1 Privileged Functions

• setPause [ owner ]

• setFeeManager [ feeManager ]

• acceptFeeManager [ pendingFeeManager ]

• setDibs [ feeManager ]

• setReferralFee [ feeManager ]

• setFee [ feeManager ]

• setCustomFees [ feeManager ]

• setCustomReferralFee [ feeManager ]

• createPair [ authorizedAccounts or feeManager ]

• addAuthorizedAccount [ feeManager ]

• removeAuthorizedAccount [ feeManager ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

PairFactoryPage 31 of 127 Paladin Blockchain Security

https://paladinsec.co


2.5.2 Issues & Recommendations

Issue #08 A referral cap was added but setCustomReferralFee remains uncapped, 
potentially bricking swaps when set to an excessive value

Severity

Description The referral fee was capped to a fixed value, reducing the risk of accidentally 
setting it to an excessively high value and bricking swaps until it is lowered 
again.

However, this safeguard was not implemented within the setCustomRefe-
rralFee function.

Recommendation Consider adding it there as well.

Resolution

Issue #09 Swap fees cannot be set to zero

Severity

Description The swap fees can never be configured to zero within the system, as this value 
is treated as the “unset” state for fee overrides and is prohibited to be the 
default fee.

Recommendation Consider whether this is an issue. If not, this issue will be resolved on that 

note. If so, consider adjusting both the Pair and PairFactory code to 
allow for zero fees, and use, for example, a boolean flag for the fee override 
to indicate whether it is set or not.

Resolution

PairFactoryPage 32 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #10 Typographical issues and gas optimizations

Severity

Description Line 5

import '../interfaces/IPair.sol';

This import is unused.

Line 17

uint256 public MAX_REFERRAL_FEE;

This variable seems to be a misnomer, as it represents the default, and within 
the SuperNova system, the recipient of this fee is set to a multi-signature 
wallet and not a referral address. However, the fee seems to be set to zero 
within the SuperNova system.Line 78-79

require(msg.sender == pendingFeeManager, "NA");
feeManager = pendingFeeManager;

It is slightly more idiomatic to also check that msg.sender is not the zero 
address here, since pendingFeeManager is zero by default. Although it 
is practically impossible for that to occur, it is cleaner to reset the pend-
ingFeeManager to the default zero address after the feeManager gets set.

Lines 123-124 and 130-131

if (customFees[_pairAddress] > 0) {
  return customFees[_pairAddress];
...
if (customReferralFees[_pairAddress] > 0) {
  return customReferralFees[_pairAddress];

These sections of code are inefficient with regards to gas usage as the 
functions access the same storage slot twice.

Most of the governance functions lack events.

Recommendation Consider fixing the typographical issues and gas optimizations.

Resolution

PairFactoryPage 33 of 127 Paladin Blockchain Security

https://paladinsec.co


2.6 Pair
Pair is one of the main liquidity pool contracts for the system. It defines the swap and LP 
logic for both the basic and the stable pools and is based on the following chain of forks: 
It is a direct fork from Thena, which forked indirectly from Solidly, which is based on the 
Uniswap V2 Pair. Unlike the Uniswap V2 pair, Solidly and thus this contract also support a 

custom curve—the "stable" curve which uses x³y + y³x >= k instead of the traditional 
x*y >= k swap invariant.

Another difference compared to Uniswap V2 is that fees are sent to a separate PairFees 
contract instead of being compounded, which reduces the contract's attack surface.

The fee logic has also been made more elaborate, allowing fees to be split among several 
recipients: the referral fee (currently just a multisig owned by SuperNova, but set to zero) and 
the fee to liquidity providers. This means that unstaked LP positions earn 100% of the swap 
fees, unlike most other protocols where a portion of this swap fee returns to the protocol. 

This is because most commonly the Pair LP will be staked inside a GaugeV2 contract, which 
has its own custom fee processing logic where the fee goes to the voters of that gauge.

A side effect of the fee logic is that small rounding errors will cause fee rewards to be 
permanently stuck in the fee contract. Additionally, there is a risk that the pair contract 
itself accumulates fees that will forever remain unclaimable, as the burn function expects 
LP value to be stored in the pair itself. If this temporary LP value accumulates any swap 
fees, those fees will forever be unclaimable. This is not raised as an issue as it is inherent to 
the design, and the expected use case is for no swaps to occur between sending liquidity to 
an LP and burning said liquidity.

Pair is meant to be solely interacted with through a peripheral contract like a router, 
which defines all safeguards to avoid lost tokens. Several components of the Pair, such 
as its fee mechanism, result in small rounding errors that will disfavor protocol users. Some 
fee tokens may become stuck in the fee contract, and users might overpay for liquidity 
addition/removal/swaps depending on the router implementation. This is mostly inherent 

to Uniswap V2. It should also be noted that Pair is to be deployed by the PairFactory 
through the PairGenerator, and that the factory should perform important checks on 
the tokens such as order verification.

Pair is not compatible with special tokens, most notably tokens with a fee on transfer, as 
its fee mechanism does not account for the fees. However, the client has indicated that they 
will coordinate with teams of such tokens to disable the fee for the SuperNova contracts, 
allowing them to be used. Additionally, tokens such as rebasing tokens will always cause 

PairPage 34 of 127 Paladin Blockchain Security

https://paladinsec.co


issues. Finally, it is not compatible with tokens with an extremely large number of decimals 

or extremely large supplies (risk of _f overflowing).

Finally, the Pair defines a very rudimentary oracle, though we recommend not overly relying 
on it as it has the same inherent shortcomings as most on-chain oracles where issues like 
availability problems due to chain outages can cause it to be very brittle. It should also be 
noted that many of the oracle functions do not have parameter validation such as checks 
that window sizes are non-zero, etc. We will not raise this as an explicit issue in this audit as it 
is meant to save gas, and the minimum parameterizations (e.g., window size 1) are often still 
insufficient. However, we still recommend the client document this in their documentation.

2.6.1 Privileged Functions

None.

PairPage 35 of 127 Paladin Blockchain Security

https://paladinsec.co


2.6.2 Issues & Recommendations

Issue #11 swaps can be blocked by the SuperNova governance

Severity

Description The swap functions can be blocked or paused by the SuperNova team. This 
should be taken into consideration by teams building contracts on top of 
SuperNova.

The swap function can be blocked via multiple methods: pausing the factory, 
upgrading the factory to revert on isPaused(), dibs(), getRefer-
ralFee() and stakingNFTFee().

Recommendation Consider documenting this carefully.

Resolution

Issue #12 Stable pair MINIMUM_LIQUIDITY requirement is lower than Uniswap V2’s 
under very edge-case circumstances

Severity

Description The team has significantly strengthened the minimum liquidity that gets 
locked for stable pairs. This is a positive change as it avoids a common issue 
present with many Solidly forks.

However, under very specific token parameters, the requirement now 
appears to be lower than the original Uniswap one –– most notably when the 
decimals of the individual tokens are very low, e.g. less than or equal to four.

The _k check on the minimum liquidity still appears to be sufficient 
requirement to avoid any issues, but given that a requirement from the 
original Uniswap protocol is loosened, we still want to recommend that it is 
at least always as strong as Uniswap’s.

Recommendation Consider updating the code-section to something like:

uint minimumLiquidity;
if(stable) {
  minimumLiquidity = Math.max(MINIMUM_LIQUIDITY, _getMi-
nimumLiquidity(_amount0, _amount1));
} else {
  minimumLiquidity = MINIMUM_LIQUIDITY;
}

Resolution

PairPage 36 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #13 Fee precision mechanism may cause the pair to block swaps for tokens with 
an extremely large supply and large amount of generated fees

Severity

Description Line 180-182 (and 205-208)

uint256 _ratio = amount * 1e18 / totalSupply;
if (_ratio > 0) {
    index0 += _ratio;

During Pair swaps, the fees are added to an index for eventual distribution. 
The math for this calculation may be prone to overflow in very niche cases as 

amount is a quantity of individual tokens while totalSupply is a quantity 
of the LP supply. In theory, index0 could thus become excessively large to 
eventually overflow and deny swaps on pairs.

This issue is rated as low as Uniswap pairs are not supposed to work well with 
tokens with a large supply anyways. However, this issue is included as it can 
be avoided with mitigation code.

Recommendation Consider whether such tokens or pairs will ever be added. If so, consider 
mitigating this by performing the addition in an overflow-safe manner, where 
the fee is set to zero or (for example) sent to an admin instead if it is about to 
overflow.

This issue will be resolved on the note that such tokens are not in the scope 
of the protocol.

Resolution
The client will not support such tokens.

PairPage 37 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #14 _getAmountOut and all functions relying on it are sometimes slightly 
inaccurate for stable pairs, causing routers to receive slightly fewer tokens

Severity

Description Lines 441-442

function _get_y(uint x0, uint xy, uint y) internal pure 
returns (uint) {
    for (uint i = 0; i < 255; i++) {

The _getAmountOut function relies on a binary search algorithm to invert 
the _k function for stable pairs. This binary search is capped at 255 iterations 
to prioritize liveness over accuracy. Under specific inputs, as can be achieved 

through fuzzing, the 255 iterations can be exhausted and _getAmountOut 
will be slightly inaccurate.

Routers and other periphery contracts relying on this function may receive 
slightly fewer tokens in this case compared to what they theoretically could 

have withdrawn from the Pair.

It should also be noted that this issue might always be present to a lesser 

extent due to rounding in functions such as _f.

Recommendation Consider whether this is a problem. It seems that using a capped loop instead 
of a while loop was an explicit decision to prioritise liveness over absolute 
correctness. If that was indeed the goal, and it is acceptable that the router 
may very infrequently give back slightly fewer tokens, then this issue can be 
resolved on that note.

Resolution

PairPage 38 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #15 Several functions do not have a reentrancy lock

Severity

Description The skim, sync, mint, burn and swap functions all have the lock 
modifier to protect them from reentrancy. However, claimFees, claim-
StakingFees, transfer and transferFrom function do not have this 
lock, allowing for reentrancy not only between these functions, but also from 

functions such as burn into for example transferFrom.

This was initially a concern for us as these unmarked functions all call 

_updateFor, which is an important fee-accrual function, and is thus tied 
to swaps, mints and burns. However, after running tests, we could not find a 
way to abuse this through reentrancy.

We still raise this as a concern as we do not recommend violating the c-
hecks-effects-interactions pattern in a codebase. That being said, we do 
understand that certain contracts may want to re-enter into functions such as 

claimFees or transfer during a swap and adding guards would prevent 
this.

Recommendation Consider this trade-off between availability of these functions within the 
reentrancy hook and more formal security. If more formal security is desired, 
consider adding reentrancy guards to these functions.

Resolution
The client has checked that this is fine for them.

PairPage 39 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #16 current() should not be used as an actual TWAP function

Severity

Description Line 284-285

function current(address tokenIn, uint amountIn) external 
view returns (uint amountOut) {
  Observation memory _observation = lastObservation();

The Pair exposes a current function which might be confused by other 
contract developers as exposing a TWAP. However, current can be easily 
manipulated as it simplly uses the current accumulated price since the last 
snapshot, which can be extremely recent.

Recommendation Consider documenting this with a comment to avoid confusion amongst 
developers using this function.

Resolution

Issue #17 Typographical issues

Severity

Description Line 183

_safeTransfer(token1, _dibs, _referralFee); // transfer 
the fees out to PairFees

We did not notice this typographical issue in the original audit. The fees are 

not transferred to the PairFees contract here.

Lines 544-545

address recoveredAddress = ECDSA.recover(digest, v, r, 
s);
require(recoveredAddress != address(0) && recoveredAd-
dress == owner, 'ISIG');

The OpenZeppelin ECDSA.recover function already checks that the 
resulting address is non-zero; the first portion of the subsequent requirement 
is thus redundant.

Recommendation Consider fixing the typographical issues.

Resolution

PairPage 40 of 127 Paladin Blockchain Security

https://paladinsec.co


2.7 PairFees
PairFees is a sub-contract of the Pair contract. It is responsible for the trading fees that 
are meant to be distributed to liquidity providers.

During any swap, the fee amount eligible for distribution is sent into PairFees by the Pair.

When liquidity providers call claimFees on the Pair, this function will calculate the 
exact claimable amount for the user, mark that amount as claimed, and subsequently call 

claimFeesFor on its PairFees instance, thus providing the user (“liquidity provider”) 
who called the function, the amounts to claim. These amounts are then transferred from 

the PairFees contract to the user.

PairFees gets deployed during the creation of Pair and is fully managed by said Pair. 
Each Pair thus has its own PairFees child.

As with most contracts within this codebase, PairFees strictly does not support negative 
rebasing tokens (where the balances can decrease naturally through rebases) and positive 
rebases will be permanently stuck within the contract.

2.7.1 Privileged Functions

None.

PairFeesPage 41 of 127 Paladin Blockchain Security

https://paladinsec.co


2.7.2 Issues & Recommendations

Issue #18 Fee mechanism will malfunction for fee-on-transfer tokens, causing there to 
be insufficient fees for everyone

Severity

Description When fees are claimed, the pair will transfer them to this PairFees contract. 
This transfer will however cause a smaller amount of tokens to arrive with 
a popular type of token called a “fee-on-transfer” token. These tokens are 
known to incur a transfer fee whenever they are transferred, which is typically 
either burned or sent to a fee address.

However, the Pair indiscriminately withdraws the fees as if they were all fully 
received by PairFees. If the fee is 10% for example, a user who generated 
$10 in fees will be able to fully claim them, even though the contract only 

has $9 in fees. If no other funds are present in PairFees, the user will not 
be able to withdraw their fees due to insufficient funds in the contract. Even 
if there are still funds, there will always be users who cannot withdraw their 
fees due to the 10% shortfall that will inevitably be taken from other users’ 
share of the fees.

This issue is rated as medium instead of high as fee-on-transfer tokens are 
only a subset of all tokens. However, Ethereum still has many of them.

Recommendation Consider using a before-after pattern, or strictly documenting the fact that 

fee-on-transfer tokens are not supported for tokens where the PairFees 
contract is not whitelisted.

Resolution
The client has indicated they will coordinate with the teams of these 
tokens to ensure that the SuperNova tokens are whitelisted from the 
fee, before adding these tokens.

PairFeesPage 42 of 127 Paladin Blockchain Security

https://paladinsec.co


2.8 PairGenerator
PairGenerator deploys new Pair instances for both basic and stable pools on the 
platform. The contract contains the code for a Pair and uses a factory pattern to deploy 
new instances whenever the createPair function is called, which is callable by anyone.

2.8.1 Privileged Functions

• setFactory [ factory ]

PairGeneratorPage 43 of 127 Paladin Blockchain Security

https://paladinsec.co


2.8.2 Issues & Recommendations

Issue #19 Typographical issues

Severity

Description Line 26

function setFactory(address _factory) external 
onlyFactory {

PairFactory does not provide functionality to call this function, though it 
appears upgradeable so this could be added down the line.

Lines 11-13

address internal _temp0;
address internal _temp1;
bool internal _temp;

The naming of these variables is rather ambiguous. Consider renaming them 

to tempToken0, tempToken1 and tempStable.

—

The new setFactory function lacks an event.

Recommendation Consider fixing the typographical issues.

Resolution

PairGeneratorPage 44 of 127 Paladin Blockchain Security

https://paladinsec.co


2.9 PairBootstrapper
The PairBootstrapper is a simple utility contract added to safeguard the pair creation 
and initial mint for both the V2 and CL pairs further. It is meant to be used for simple tokens 
(eg. no reentrancy tokens) as reentrancy tokens could circumvent or affect the safeguards. 
As the whole system is designed for simple tokens we have not re-iterated this as an issue.

For V2 pairs, it explicitly confirms that the minimum amount was burned and if not- it burns 
it. It furthermore does a more robust mint as the router-based mints are more brittle. That 
being said- the V2 mint lacks checks on the liquidity minted, but given that the pair must 
be created in the same transaction, this should not be a problem as long as no reentrancy 

occurs. Worst case, the mint occurs at a different price due to someone donating tokens to 
the address beforehand, in which case the creator gets these tokens and makes a profit. 
If reentrancy is possible, the mint can be affected and someone may frontrun it with a 
malicious price, to extract most of the value. Reentrancy guards would not protect against 
this so this function should simply not be used for such tokens.

For V3 pairs, it sets up an initial full range position and sends it to the provided recipient. 

It should be noted that the caller needs to carefully consider initialSqrtPriceX96, as 
it’s independent of the provided token order.

2.9.1 Privileged Functions

• createBasicPairAndAddLiquidity [ owner or authorized account ]

• createCLPoolAndAddFullRange [ owner or authorized account ]

• addAuthorizedAccount [ owner ]

• removeAuthorizedAccount [ owner ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

PairBootstrapperPage 45 of 127 Paladin Blockchain Security

https://paladinsec.co


2.9.2 Issues & Recommendations

Issue #20 Lack of deadline for V2 liquidity addition

Severity

Description Even though the createCLPoolAndAddFullRange function has a 
deadline parameter, the createBasicPairAndAddLiquidity function 
lacks this parameter. This means that this functionality can’t be used for the 
V2 liquidity addition.

Recommendation Consider adding the deadline parameter to the V2 function as well, if it’s 
considered a useful feature.

Resolution

Issue #21 Typographical issues

Severity

Description Line 75

event BasicPairCreatedAndSeeded(address indexed pair, 
address indexed tokenA, address indexed tokenB, bool 
stable, uint liquidity, uint amountAUsed, uint amount-
BUsed, address to);

The token related parameters should be called 0 and 1 instead.

Line 128-129

amountA = tokensSwapped ? p.amountBDesired : p.amountADe-
sired;
amountB = tokensSwapped ? p.amountADesired : p.amountB-
Desired;

These variable names (amountA and amountB) are misnomers and should 
refer 0 and 1 instead.

Line 218

CreateCLParams memory p = p_;

This copy instruction appears unnecessary.

Lines 238 and 241

IERC20(token0).transfer(msg.sender, IERC20(token0).bala-
nceOf(address(this)));

PairBootstrapperPage 46 of 127 Paladin Blockchain Security

https://paladinsec.co


IERC20(token1).transfer(msg.sender, IERC20(token1).bala-
nceOf(address(this)));

These lines wrongly don’t use safetransfer, which can cause issues for specific 
non-compliant tokens.

Recommendation Consider fixing the typographical issues.

Resolution

PairBootstrapperPage 47 of 127 Paladin Blockchain Security

https://paladinsec.co


2.10 RouterV2
The RouterV2 is the entry point for users to swap, add liquidity and remove liquidity 
from the DEX pairs. It integrates the contrentrated liquidity, basic, and stable pools all 
into a single interface, though certain functions only support basic or stable pools. For 
the concentrated liquidity pools, users will sometimes have to directly interact with the 
Algebra-based router.

RouterV2 is re-configurable: the router for the concentrated liquidity and the address of 
WETH, which calculates all swap amounts and is indirectly used to validate the minimum 
amount that users receive, can all be changed. This can create risk for users, but fortunately 
there is no risk for open approvals to be drained to our knowledge, as transfers from the 
user appear to always require a message to be sent by said user.

Tokens sent by accident to the RouterV2 can and will be taken out by searchers almost 
immediately, as the router provides mechanisms that allow anyone to extract approved 
token balances.

2.10.1 Privileged Functions

• setSwapRouter

• setAlgebraFactory

• setAlgebraPoolAPI

• setWeTH

• transferOwnership

• renounceOwnership

RouterV2Page 48 of 127 Paladin Blockchain Security

https://paladinsec.co


2.10.2 Issues & Recommendations

Issue #22 addLiquidity frontrunning protection can be bypassed

Severity

Description Basic reentrancy protection has been added to addLiquidity, which is 
intended to prevent reentrancy during token transfers that call mint or skim 
on the pair to extract the just-added tokens. The minAmountOut safeguards 
of the router were insufficient as they are performed on a simulation of the 
liquidity addition rather than on the actual result. This is a common issue with 
all Uniswap V2 routers that is unlikely to materialize as very few legitimate 
tokens allow for such reentrancy, but it is theoretically possible.

The resolution that was introduced was to check that no liquidity was added 

or removed after the token transfers, as an attempt to check that mint was 
not called during that period. However, this is insufficient as skim could still 
be called alongside with a combination of mint and burn, which would leave 
the totalSupply unchanged. The check is therefore insufficient.

Recommendation Consider either acknowledging the issue as most Uniswap V2 routers do, or 

fetching the totalSupply and reserves after the mint is done, and doing 
the minAmountOut checks on the actual reserve values of the liquidity 
returned by the mint call. This should guarantee that the liquidity minted to 
the user is valued at at least what the user inputs, but adds a few extra calls 
and lines of code, increasing the gas cost and complexity of the function.

Resolution
The protection has now been removed as it was not adding security. 
Note that no new protection was implemented. Keep this in mind and 
be extremely careful with any special tokens.

RouterV2Page 49 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #23 swapPossible check for fee-on-transfer swaps will succeed prematurely

Severity

Description Within the SwapRouter, adjustments have been made to include any tokens 
accidentally sent to the pair without syncing in swap calculations. This is 
beneficial and improves the accuracy of the math.

However, within the fee-on-transfer swaps within the RouterV2 contract, 
tokens are first sent to the pair before this math is called. This causes the math 
to double count as the balance differential will be included as part of the input 

amount. This token differential is also explicitly provided to the _swapRatio 
within getAmountOut, guaranteeing that it will be counted exactly twice.

This will cause the function to prematurely indicate that swapPossible is 
true even when it is not.

Recommendation Consider refactoring the math within _swapRatio to support a zero 
amountIn. Consider providing an amountIn of zero into getAmountOut. 
Note that this will require a refactor in the SwapHelper as it will still need to 
provide the correct amount in into pair.getAmountOut.

Resolution

RouterV2Page 50 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #24 The add liquidity functions are inefficient for fee on transfer tokens and do 
not properly enforce the minimum amount out for them

Severity

Description Although the addLiquidity functions are designed to support 
fee-on-transfer tokens, they do not interact ideally with them.

First, the minimum token amounts for fee-on-transfer tokens are not 
properly accounted for during the liquidity addition process.

Second, the pair contract receives an imbalanced amount of tokens because 
fewer tokens arrive than were initially sent. This discrepancy causes the 
user to overpay when adding liquidity, and the excess tokens are effectively 
donated to the pair. As a result, the pair’s liquidity increases slightly, while 
the token’s price within the pool correspondingly decreases.

Additionally, the removeLiquidityETHSupportingFeeOnTransferT-
okens function is inefficient. It can trigger an unnecessary additional transfer 
fee because the token is first routed back into the router before being sent to 
the user.

Recommendation Consider displaying a warning on the frontend regarding this issue. If an 
efficient method is desired, a fallback function can be implemented that 
first transfers the fee-on-transfer token and subsequently calculates the 
appropriate amount of the secondary token to send. However, this approach 
is cumbersome to implement and still does not support pairs containing two 
fee-on-transfer tokens.

Additionally, consider raising a warning when the ETH liquidity removal 
function is invoked, recommending that users utilize the WETH function 
instead.

Resolution
The client has indicated they will coordinate with the teams of these 
tokens to ensure that the SuperNova tokens are whitelisted from the 
fee, before adding these tokens.

RouterV2Page 51 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #25 The swap routes provided are not properly enforced to actually contain 
sensible data

Severity

Description The swap functions require the user to provide a swap route, which represents 
a chain of pairs through which the swap will be executed.

This swap data is quite verbose, and much of it is not validated to ensure 
sensibility. For example, there is no validation that the destination token of 
one hop in the route matches the source token for the next hop. There is 
also no validation that the provided pair contract actually corresponds to the 
two tokens being swapped. In many cases, incorrect data can be provided, 
yet the function will still execute successfully because it only utilizes specific 
elements from the route.

Similar to the issue described above, this behavior can mislead users who are 
inspecting their transaction data.

Recommendation Consider validating all values of the route.

Resolution

RouterV2Page 52 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #26 The router is not very robust when malicious reentrancy hooks are present 
on tokens within the swap route

Severity

Description If any token within the swap route permits arbitrary code execution, 
it can potentially weaken the security of certain router functions. For 

example, the removeLiquidityETHSupportingFeeOnTransferToke-
ns functions could be exploited to drain their token balance by performing 
a reentrancy attack that re-invokes the function before the token transfer 
is completed. Although this scenario is theoretically possible, the likelihood 
is very low because such reentrancy would require the involvement of a 
malicious token, which legitimate users would typically avoid pairing with in 
a liquidity pool.

Similarly, the addLiquidity function could, in theory, be frontrun by an 
attacker who triggers the mint operation in advance. However, this is also 
considered highly unlikely.

In addition, the amountOutMin parameter can be effectively bypassed 
in swap functions that support fee-on-transfer tokens under specific 
conditions. For example, if a user has an active CowSwap order involving 
the same receipt token, a reentrancy on any token in the route could trigger 
the CowSwap order. Since such an order might execute at minimal cost, the 
tokens could be sent to the user nearly free of charge if the order price is 
close to market value. This would mislead the before-and-after validation 
pattern, making it appear as though the swap generated tokens for the user 

and causing the amountOutMin check to pass, regardless of the real swap 
amount.

Overall, the router lacks robustness against these edge-case scenarios. 
Fortunately, these cases are expected to be extremely rare since all pairs 
are whitelisted within the SuperNova system, making their occurrence 
improbable.

Recommendation It is recommended to combine the before-and-after balance validation 
pattern in the swap functions with an additional check on the advertised 
output amount of the final pair. While the actual received amount may be 
lower, this provides a useful secondary layer of verification.

Furthermore, a highly effective additional security measure would be to 
simulate the swap on the frontend and validate the results of this simulation 
(a so-called “dry-run”). This allows potential issues to be identified before the 
transaction is executed on-chain.

It should be noted that implementing reentrancy guards alone is insufficient, 
as they do not mitigate the CowSwap-based reentrancy vector.

RouterV2Page 53 of 127 Paladin Blockchain Security

https://paladinsec.co


Resolution
The client has indicated that they will not add reentrancy tokens to 
their routes.

The client has indicated they will coordinate with the teams of 
fee-on-transfer tokens to ensure that the SuperNova tokens are 
whitelisted from the fee, before adding these tokens.

Issue #27 The requested minimum amount out might not be correctly enforced for 
special tokens

Severity

Description The requested minimum output amount is validated against the amount that 
the pair attempts to send to the user, rather than the actual amount the user 
ultimately receives. If the final token in the swap has special behavior, this 
can result in the minimum output requirement not being properly enforced.

Recommendation It is recommended to document this behavior to ensure clarity and 
prevent misuse. Implementing a before-and-after balance validation pattern 
alongside the existing strict output check could provide an ideal balance 
between safety and functionality.

Resolution

RouterV2Page 54 of 127 Paladin Blockchain Security

https://paladinsec.co


2.11 RouterHelper
RouterHelper is an upgradeable sub-contract of RouterV2. It performs the pre-calcu-
lations for the all the individual swaps of a swap route, and facilitates the integration of 
concentrated liquidity, stable and basic pairs all into a single swap.

2.11.1 Privileged Functions

• transferOwnership

• renounceOwnership

RouterHelperPage 55 of 127 Paladin Blockchain Security

https://paladinsec.co


2.11.2 Issues & Recommendations

Issue #28 Swap prices for stable pairs will mostly return either “0” or “1” due to a 
normalization error

Severity

Description The stable swap prices have been updated by the client to be correct, as 
previously the returned prices were quite arbitrary.

The prices are now calculated within _calculateStableSwapPrice-
, which calculates the derivative of the stable curve invariant. Though this 
derivative appears correct, the normalization of the result is incorrectly set 

to 1 instead of 1e18. This causes the prices to be rounded to full numbers.

For most stable pairs, since their prices mostly hover around the 1:1 

exchange rate, their returned prices will mostly be either 0 or 1 due to the 
normalization and rounding down behavior of the function.

The prices returned from the RouterHelper functions do not appear to be 
used anywhere, so this issue is only relevant for integrating contracts.

Recommendation Normalize the result correctly. Take into account that division before multipli-
cation causes precision to be lost, while doing multiplication before division 
can cause overflow with high supply tokens. A trade-off should thus be made.

Resolution
We remind integrators that the new prices are accurate but have 
complex rounding behavior, as both the math numerator and 
denominator round down.

RouterHelperPage 56 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #29 getAmountsOut does not handle failures gracefully

Severity

Description getAmountsOut has multiple branches in its body that can fail. If 
statements are created for all of them, and risky calls are wrapped in 
try-catch blocks.

The concern is that the exception cases are only properly handled in a single 
branch, while all other exception branches are not properly handled. Only in 

a single branch is the function returned early via a break statement. In all 
other branches, such as when the pair address is not a V2 pair and when the 
try statements fail, iteration will be attempted to continue instead of failing 
early.

In the commits for this review, an attempt was made to resolve this, and 
nearly all of the locations of the above issue now have break statements. 
However, handling is not included in the exception scenario where the 
following if-statement is incorrect.

Recommendation Consider handling the missed scenario as well.

Resolution

RouterHelperPage 57 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #30 _calculateStableSwapPrice is slightly vulnerable to overflow reverts

Severity

Description _calculateStableSwapPrice accurately calculates the marginal swap 
price of stable pairs given their reserves. However, the math within this 
function can become a bit large for tokens with a very high supply and low 
number of decimals:

Lines 188-193

uint normR0 = decimals0 <= 18 ? reserve0 * 10**(18 - 
decimals0) : reserve0 / 10**(decimals0 - 18);
uint normR1 = decimals1 <= 18 ? reserve1 * 10**(18 - 
decimals1) : reserve1 / 10**(decimals1 - 18);

uint r0Sq = normR0 * normR0 / 1e18;
uint r1Sq = normR1 * normR1 / 1e18;
uint den = normR0 * (r0Sq + 3 * r1Sq);

Given pairs with large reserves, this math will revert seemingly more quickly 
than the stable pairs will start reverting (all swap pairs have an upper limit on 
reserve sizes as well).

Recommendation This does not need to be resolved if such tokens are not planned to be added.

Resolution
We remind integrators that the new prices have complex rounding 
behavior.

RouterHelperPage 58 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #31 _swapRatio fixes have small edge cases which can cause reverts and small 
side-effects in very specific situations

Severity

Description Line 156

uint actualAmountIn = amountIn + (pairSwapMetaData.bala-
nceA - pairSwapMetaData.reserveA);

The brackets here seem unnecessary and slightly increase underflow revert 
risk if the token is rebasing with a contracting supply. Obviously such tokens 
are not well supported in Uniswap in the first place.

Line 158

pairSwapMetaData.balanceA += amountIn - feeAmount;

A similar concern to the above issue is present here, where if feeAmount 
exceeds amountIn due to there being a large balance increase, the function 
reverts. Arguably reverting in this scenario is probably desirable as this is an 
odd and unnatural scenario indicating that the user is likely being abused 
somehow. No changes are thus needed from our side with regards to this.

afterReserveB is more accurately set to balanceB - amountOut as 
well.

Recommendation Consider fixing the above concerns with the new _swapRatio implementa-
tion as you see fit. These are very niche edge cases so this issue can also 
simply be acknowledged.

Resolution

RouterHelperPage 59 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #32 getAmountOut will still return a value even if the factory paused V2 swaps

Severity

Description The getAmountOut function does not account for the fact that the factory 
might pause v2 swaps.

Recommendation It is recommended to evaluate whether this constitutes a security or 
operational issue. If determined to be problematic, consider adding checks 

for the isPaused state to all relevant functions

Resolution
The client has confirmed this is not a concern for them.

Issue #33 Typographical issues and gas optimizations

Severity

Description Line 8

import '@cryptoalgebra/integral-periphery/contracts/int-
erfaces/ISwapRouter.sol';

This import appears unused.

Lines 12 and 14

import "@openzeppelin/contracts-upgradeable/access/Owna-
bleUpgradeable.sol";
contract RouterHelper is OwnableUpgradeable {

OwnableUpgradeable appears to currently be unused, though we 
understand it being included for future upgrades.

Line 32

address public factory;

All other address variables are cast to their type. Consider casting this to 

IPairFactory as well to avoid having to cast it in all use cases.

Lines 108-109

(uint decimals0, uint decimals1, , , , , ) = IPair(rout-
es[i].pair).metadata();
(uint beforeReserve0, uint beforeReserve1,) = IPair(rou-
tes[i].pair).getReserves();

RouterHelperPage 60 of 127 Paladin Blockchain Security

https://paladinsec.co


All of these values are already fetched within the earlier _swapRatio call. 
Fetching them again wastes gas.

Line 141

uint afterReserveA = pairSwapMetaData.reserveA + 
(amountIn - (amountIn * IPairFactory(factory).getFee(p-
air, pairSwapMetaData.stable) / 10000));

This fee was already fetched on line 138, consider simply re-using it.

Line 165

// performs chained getAmountOut calculations on any 
number of pairs

The function below this comment does not do any chained operations.

Line 210

// calculates the CREATE2 address for a pair without 
making any external calls

Actually, the function below this does not use CREATE2 and does use an 
external call.

Line 212

(address token0, address token1) = sortTokens(tokenA, 
tokenB);

This is currently unnecessary as the getPair function below it is robust 
against the ordering of the tokens.

Recommendation Consider fixing the typographical issues and gas optimizations.

Resolution

RouterHelperPage 61 of 127 Paladin Blockchain Security

https://paladinsec.co


2.12 VotingEscrow
VotingEscrow is the primary governance contract for the system. It defines the voting 
escrow NFT token, which is a locked/staked variant of the native token and is based on the 

Curve veCRV token.

Similar to the original Curve voting-escrow, it facilitates locks of up to 4 years to be created. 
These locks then decay linearly in voting power over those four years. If locks are created 
with a smaller lock duration such as two years, their voting power starts off proportionally 
lower, i.e., 50% of the amount of voting escrow locked for 2 years. The voting power will then 
decay at the same rate for the remaining two years. The system also provides the option of 
"permanently" locking a position, which disables decay. This position can then be converted 
back at any time to re-enable the decay, but doing so will lock it for four years.

A unique feature is that native tokens can be permanently staked without the option to 
unlock as well, which permanently burns the underlying native tokens. This type of NFT is 

called an SMNFT. A bonus of 10% in voting power is granted to such locks — this bonus is 
configurable.

The VotingEscrow locks are represented as transferable NFTs. However, transfers are 
disabled while the NFT has votes cast in VoterV3.

Users can mint new locks for themselves and others, and they can increase the duration 
or value of their own locks as well as increase the value of others’ NFTs. If enabled by 
governance, they can split their NFTs into two. They can merge their NFTs at any time 
— merging NFTs will combine them into a single NFT with the largest lock duration and 
upgrade the other NFT into permanent/sMNFT status if it is not already that. It allows an 
NFT to be moved into lock and unlock status, or upgraded to sMNFT (which is non-re-
versible).

When NFTs are eventually withdrawn back into the native token after they expire, the native 
tokens are sent to the caller of that transaction which can be the owner of the NFT but can 
also be an approved caller.

VotingEscrow positions can vote on gauges such that they receive weekly emissions, and 
receive the bribes and trading fees of those pools as compensation. They also receive a 
small weekly rebase staking reward.

2.12.1 Privileged Functions
VotingEscrowPage 62 of 127 Paladin Blockchain Security

https://paladinsec.co


• setTeam

• setArtProxy

• setVoter

• toggleSplit

• setSmNFTBonus

VotingEscrowPage 63 of 127 Paladin Blockchain Security

https://paladinsec.co


2.12.2 Issues & Recommendations

Issue #34 NFTs are incorrectly self-delegated during NFT transfers

Severity

Description The vote delegation logic was redesigned after several concerns were raised 
in the original audit. However, the refactored code still contains several 
issues.

Token mints, burns, and transfers all move the delegation from the previous 
owner of the NFT to the new owner. This is flawed as the delegation logic 
assumes delegation is always moved from the delegatee of the previous 
owner to the delegatee of the new owner. This becomes an issue because 

the delegate functions still properly move all tokens from the previous 
delegatee to the new delegatee.

The combination of these two different behaviors allows a token to be 
delegated to multiple accounts. For example, assume Alice executes:

1. delegate(bob)

2. create_lock(…) - Adds the minted tokenId to the delegated 
tokens of alice

3. delegate(alice) - Adds the minted tokenId AGAIN to alice

This sequence will end up with the tokenId being included twice in Alice’s 
delegations list, allowing the various getPastVotes functions to double 
count her voting power.

Recommendation Consider removing all delegation logic completely if there is no planned use 

for it. Alternatively, consider consistently using the delegates for the moveTo-
kenDelegates call. The ownerOf checks within moveTokenDelegates 
still appear fully incorrect and the MAX_DELEGATES DDOS risk still appears 
to be present. We do not recommend using this delegation logic in its current 
state.

Resolution
Delegation was fully removed.

VotingEscrowPage 64 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #35 Split can now leave one of the two NFTs with a zero value, an outcome which 
was previously impossible

Severity

Description Line 1181

require(_splitAmount > 0 && _splitAmount <= newLock-
ed.amount, "ISA");

The second portion of the above requirement was newLocked.amount 
> _splitAmount, meaning that the full amount could not be split off 
previously, but now it can be.

This means that the split function can be used to mint NFTs with a zero 
value when it was initially impossible and thus increases the attack surface 
of this contract.

As fixes were being iterated quickly with the client, this was immediately fixed 
when indicated to them; hence the impact was not investigated further.

Recommendation Consider reverting to a strict lesser than check.

Resolution
The requirement is made strict again.

VotingEscrowPage 65 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #36 ownerOf does not revert for invalid tokenId inputs

Severity

Description ownerOf does not explicitly revert for invalid inputs, which is not an expected 
property for NFTs.

This is worsened by the fact that a zero owner is sometimes used to denote 
that the NFT does not exist, but NFTs can be transferred to the zero address 
while they still exist.

Recommendation Consider explicitly reverting this function. However, other locations use this 
function to check whether a token exists, and those functions may break if it 
starts reverting. All relevant locations would need to be refactored.

Resolution

Issue #37 Unsafe casts occur throughout the contract which reduces code-safety, 
especially if SUPERNOVAs supply ever increases significantly

Severity

Description Throughout the contract, inputs and balances get downcast into smaller 
types without explicitly checking against overflows. This is typically fine as 

the SUPERNOVA token supply will not be large enough for such overflows to 
happen, but as demonstrated in a high severity overflow issue, it can easily 
cause for issues to slip through.

If this contract were to be ever re-used for a token with a larger supply, it may 
also cause issues.

Recommendation Consider carefully going through the contract and refactoring all locations 
where unsafe casts occur.

Resolution

VotingEscrowPage 66 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #38 Several functions lack reentrancy guards

Severity

Description VotingEscrow has reentrancy guards. It is not immediately clear why this 
is, but the argument to add them out of precaution is understood.

However, currently some key functions lack such guards and could still 
be reentered into if reentrancy was possible. The user facing functions 

are: checkpoint, transferFrom, safeTransferFrom, lockPerma-
nent and unlockPermanent.

This issue is raised informationally as reentrancy hooks are not observed, 

except with safeTransferFrom, but there it happens at the end and is still 
permitted to reenter (though from this perspective, reentrancy at the end 
there is desired).

Recommendation Consider adding reentrancy guards to the above functions if there is an 
actual reason for the guards on the other functions. Pay explicit attention 

to the reentrancy guard for safeTransferFrom: we recommend adding it 
to _transferFrom instead to allow reentrancy from the reentrancy hook 
into the various other functions, as often the receipt contract will want to 
immediately do something with the token, and would otherwise be prevented 

from doing so. Once a guard is added to _transferFrom, do not add an 
additional guard to transferFrom as they will be nested and revert.

Resolution

VotingEscrowPage 67 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #39 getsmNFTPastVotes seems to calculate the NFT balance twice

Severity

Description Lines 1306-1308

if ((up.smNFT + up.smNFTBonus) == 0) continue;
// Use the provided input timestamp here to get the right 
decay
votes = votes + VotingBalanceLogic.balanceOfNFT(tId, 
timestamp, votingBalanceLogicData);

It is unclear why this function does not simply add up.smNFT + up.smN-
FTBonus to votes. If everything is implemented correctly, this appears to 
be what balanceOfNFT should return.

Recommendation Consider investigating the above optimization to see if there is any reason to 

not directly implement balanceOfNFT. A don’t-repeat-yourself argument 
could be made for the more expensive code, acknowledging this issue is 
therefore understandable as it would reduce the risk for future refactors.

Resolution

Issue #40 Typographical issues

Severity

Description Line 1324

function _delegate(address delegator, address delegatee) 
internal {

This function appears to be unused and can be removed.

Line 1379

if (delegatee == address(0)) delegatee = signatory;

Though harmless, a non-zero check already occurs at the start of this 
function.

Recommendation Consider fixing the typographical issues.

Resolution

VotingEscrowPage 68 of 127 Paladin Blockchain Security

https://paladinsec.co


2.13 VotingBalanceLogic
VotingBalanceLogic is a library used within the VotingEscrow contract. It is 
responsible for calculating historical balances and total supplies, based on the checkpoint 

data recorded in the VotingEscrow contract.

Vulnerabilities which have been described in the VotingEscrow contract might have their 
root cause within this library. The reader is recommended to read these two sections of the 

report together. The casting issues from VotingEscrow in the initial audit are present here 
as well and should be resolved here as well.

The block-based totalSupply function will start malfunctioning if no snapshot occurs for 
255 weeks. This seems unlikely enough to not explicitly describe as an issue.

The epochs are now overwritten if they occur in the same timestamp. This means if multiple 
blocks occur in a single timestamp, only the last one will be used. Data fetched for previous 
blocks will be approximated, even though this data was present at some point. The client is 
advised to be extremely careful with block-based functions, as even if they are fetched for 
historical blocks, their data may not be final and can change until the block is fully locked in. 
Using the block-based balance functions without consulting an auditor for every use case 
is strongly discouraged.

2.13.1 Privileged Functions

None.

VotingBalanceLogicPage 69 of 127 Paladin Blockchain Security

https://paladinsec.co


2.13.2 Issues & Recommendations

Issue #41 Block-based historical balance and total supply functions may not be 
consistent until a snapshot occurs after the provided block

Severity

Description The block-based totalSupplyAt and balanceOfAtNFT approximate the 
balance and supply at the provided historical block by interpolating the two 
snapshots around the provided block number.

The issue occurs when there are no snapshots after the provided block 
number. In this case, the interpolation occurs with the snapshot before it and 
the current block's number and timestamp. This interpolation will change as 

soon as an actual snapshot occurs with the real block.number, alongside 
when any new block is produced. This means that totalSupplyAt and 
balanceOfAtNFT will return changing values for a fixed historical block until 
a snapshot locks that historical block in.

Recommendation Avoid using the block based accounting functions, since the interpolation 
logic is an approximation to some extent anyway.

Resolution
The client confirms they will avoid using this. No code changes were 
made.

VotingBalanceLogicPage 70 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #42 Typographical issues

Severity

Description Line 15

/// @notice Get the current voting power for `_tokenId`

This comment is outdated as the function below it gets a historical value.

Lines 16, 68 and 234

/// @dev Adheres to the ERC20 `balanceOf` interface for 
Aragon compatibility
/// @dev Adheres to MiniMe `balanceOfAt` interface: 
https://github.com/Giveth/minime
/// @dev Adheres to the ERC20 `totalSupply` interface for 
Aragon compatibility

This token is an NFT and not an ERC20 token. These comments are likely 
outdated and incorrect.

Lines 77-78

// Copying and pasting totalSupply code because Vyper 
cannot pass by
// reference yet

These comments appear outdated as the contract is written in solidity.

Lines 156 and 159

/// @notice Binary search to estimate timestamp for block 
number
/// @return Approximate timestamp for block

This function does something else.

Finally, this contract has identical casting issues to VotingEscrow.

Recommendation Consider fixing the typographical issues.

Resolution

VotingBalanceLogicPage 71 of 127 Paladin Blockchain Security

https://paladinsec.co


2.14 VotingDelegationLib
VotingDelegationLib is a utility contract used by the VotingEscrow contract to 
handle most of its “delegate” voting logic, where veNOVA NFT holders can delegate their 
voting rights (though not the VoterV3 voting rights) to a different wallet.

It is used on any token transfer to update the index of which tokenIds have been delegated 
to specific wallets.

This contract has been fully removed from the codebase.

2.14.1 Privileged Functions

• setTeam [ team ]

• setVotingEscrow [ team ]

VotingDelegationLibPage 72 of 127 Paladin Blockchain Security

https://paladinsec.co


2.14.2 Issues & Recommendations

Issue #43 Anyone can call the internal moveTokenDelegates and moveAllDelegates 
functions, allowing for exploiters to delegate arbitrarily to their own wallets 
and fully breaking the delegation logic

Severity

Description During the changes made in this audit scope, VotingDelegationLib was 
moved from an external library to a separate contract. External libraries 
are contracts deployed at a separate address but called from within the 

context of the VotingEscrow contract using DELEGATECALL. This means 
that even though the functions can be called by anyone, the context of the 

VotingEscrow address will not be used and there is no problem if they are 
called directly.

During the changes that triggered this diff-based audit, the client moved this 

contract to a real separate contract. This means that the new VotingDele-
gationLib is no longer delegated to but instead gets called directly. It now 
has its own internal storage that is used by all callers.

The client did not fully realize this and forgot to add authorization to the 
critical functions of this contract, meaning anyone can call them. This allows 

anyone to arbitrarily move delegates for tokenIds and even allow a single 
tokenId to be added arbitrarily many times as a delegation.

This fully breaks the system, and any other systems relying on delegation vote 
counts will be exploitable as the vote counts can be arbitrarily inflated.

Recommendation Consider only allowing the external functions to be called by the votingE-
scrow address.

Resolution
The delegation logic has been fully removed.

VotingDelegationLibPage 73 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #44 The delegation logic is fundamentally broken in multiple ways, which can be 
abused to DoS VotingEscrow mints and transfers, prevent delegations to any 
wallet and clear a wallet’s delegates at will

Severity

Description VotingEscrow supports functions to delegate voting rights to other wallets. 
Whenever an NFT is transferred to a different wallet, the delegation gets 
updated to the configured delegate of the recipient.

This logic is fundamentally broken for multiple reasons.

Reason 1: Moving delegates to a recipient is not permitted if it causes them 

to have more than MAX_DELEGATES delegated tokenIds.

Lines 96-99

require(
    dstRepOld.length + 1 <= MAX_DELEGATES,
    "tokens>1"
);

Whenever a token is transferred to a wallet (mints, transfers and splits), its 
added to the list of delegated tokens of the delegatee of the recipient. This 

addition reverts as soon as the delegatee has reached MAX_DELEGATES to 
avoid the gas consumption of the various for-loops becoming too excessive 

(though it will already be very high at MAX_DELEGATES).

The critical issue is that minting and sending tokens to a wallet is nearly 
free, as there is no minimum value attached to tokens nor a real minimum 

stake duration. A malicious actor can permanently DoS all veNFT mints and 
transfers in the public mempools permanently by consistently frontrunning 
them with a transaction that mints 1024 tokens to the destinations delegatee.

Reason 2: Fundamental logic flaw in moveTokenDelegates allows an 
exploiter to clear delegates for any wallet without consent of the delegators.

Lines 68-73

if(_isCheckpointInNewBlock) {
  if(ownerOfFn(tId) == srcRep) {
    srcRepNew.push(tId);
  }
  i++;
} else {
  if(ownerOfFn(tId) != srcRep) {
    srcRepNew[i] = srcRepNew[length -1];
    srcRepNew.pop();

VotingDelegationLibPage 74 of 127 Paladin Blockchain Security

https://paladinsec.co


    length--;
  } else {
    i++;
}

The above extract of code is taken from the moveTokenDelegates 
function. This function is called whenever an NFT is moved from wallet A to 

B, and moves the tokenId from the delegate index of delegate(A) to dele-
gate(B). In the above snippet, srcRep is delegate(A), while ownerOf(tId) 
is always address(0) due to the ordering within transferFrom.

Delegates can never be address(0) due to the default case being self-del-
egation. This means that the code-snippet above will consistently not push 

any tokenId to new checkpoints and clear the whole array of an existing 
checkpoint in the other branch. In other words, the whole delegation logic 
is fundamentally broken. Even though it is already quite broken in normal 
usage, an exploiter can also target specific wallets to clear their delegates by 
first delegating to them and subsequently removing this delegate.

This issue has been copied from the initial audit as neither were resolved at 
the commit of the preliminary scope.

Recommendation Resolving these issues while retaining a correct index will require a 
fundamental rewritting of the whole delegation algorithm. This may even 
require advanced binary search/tree algorithms to make it work in an 
acceptable time-complexity. It is clear that achieving the desired use-case 

without MAX_DELEGATES will be an engineering endevour outside of the 
scope of this audit. A short-term fix could be to only add tokens to delegates if 
their value exceeds a certain value, and requiring wallets to opt into receiving 
delegations.

Since the VotingEscrow is not upgradeable, there is not much which can 
be done here in practice, apart from acknowledging this issue and not using 
the delegation logic.

Resolution
The delegation logic has been fully removed.

VotingDelegationLibPage 75 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #45 Typographical issues

Severity

Description setTeam and setVotingEscrow lack events.

Recommendation Consider fixing the typographical issues.

Resolution
The delegation logic has been fully removed.

VotingDelegationLibPage 76 of 127 Paladin Blockchain Security

https://paladinsec.co


2.15 VoterV3
VoterV3 is the entry point for voting escrow holders to vote on which gauges should receive 
emissions. It keeps track of all issued votes and is called by the GaugeManager when it 
needs to determine how to distribute the weekly emissions across all gauges.

VoterV3 interacts with the VotingEscrow contract directly to exchange information on 
voting escrow position changes, so that the voter is updated appropriately and that certain 
actions are not possible while a voting escrow NFT has outstanding votes on it. However, 

VoterV3 does not account for the decay effect of the voting escrow NFTs. It has a feature 
where users can trigger the decay for other NFTs by calling poke, but if this is not done, the 
voting weight of an NFT will remain identical to when the initial vote was cast, even after 
the NFT is fully decayed to a zero balance.

The audit has been conducted under the assumption that the bribes, which also get a 
notification whenever a vote gets cast, do not perform any external calls. This audit should 
not be used if the implementation of the bribes changes to one where they interact back with 
the voter, as the bribes would potentially interact with it during an inconsistent state, which 
can lead to issues. This audit should only be used with the current version of all contracts 
in the system, and not when there are changes to how certain contracts interact with each.

The voter has been slightly redesigned to keep an index of the voting totals for each epoch 

that passes. This way, the GaugeManager can more correctly use the votes. This system 
will only work correctly as long as at least a single vote occurs each epoch. Ideally, all 

pools should be polled via checkpointPoolWeightsForNextEpoch. The checkpoint 
system could’ve been avoided by keeping track of the last epoch where a change occurred 
and simply using the votes from that point. If certain pools are not checkpointed, the 
system should still function, but the total sum of votes for that epoch will be less than 

the epochTotalWeight for that epoch. This means that some rewards will become 
permanently unclaimable.

2.15.1 Privileged Functions

• setMaxVotingNum [ VOTER_ADMIN ]

• setGaugeManager [ VOTER_ADMIN ]

• setEpochOwner [ owner ]

• setPermissionsRegistry [ owner ]

VoterV3Page 77 of 127 Paladin Blockchain Security

https://paladinsec.co


• transferOwnership [ owner ]

• renounceOwnership [ owner ]

VoterV3Page 78 of 127 Paladin Blockchain Security

https://paladinsec.co


2.15.2 Issues & Recommendations

Issue #46 Typographical issues and gas optimizations

Severity

Description Lines 4, 6-8, 17, 18, 21, 27, 28, 83-86, 88-90

import './libraries/Math.sol';
import './interfaces/IERC20.sol';
import './interfaces/IPairInfo.sol';
import './interfaces/IPairFactory.sol';
import "@openzeppelin/contracts-upgradeable/token/ERC20-
/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20-
/IERC20Upgradeable.sol";
using SafeERC20Upgradeable for IERC20Upgradeable;
address[] public pools;
address public epochOwner;
modifier Governance() {
  require(IPermissionsRegistry(permissionRegistry).hasR-
ole("GOVERNANCE",msg.sender), 'GOVERNANCE');
  _;
}
modifier GenesisManager() {
  require(IPermissionsRegistry(permissionRegistry).hasR-
ole("GENESIS_MANAGER", msg.sender), 'GENESIS_MANAGER');
  _;
}

All of these lines appear unused, alongside with the functions related to the 

pools and epochOwner. All of this can be deleted from our perspective, 
though we recommend making sure that no third-party contracts are using 
any of these functions. Given that the contracts are already in production this 
can probably not be guaranteed.

Line 25

address internal base; // $the token

This should say the $NOVA token instead.

Line 31

uint public EPOCH_DURATION;

Consider marking this as constant instead.

VoterV3Page 79 of 127 Paladin Blockchain Security

https://paladinsec.co


Line 42

// nft => timestamp of last vote (this is shifted to 
thursday of that epoc)

This should say “epoch” instead.

Lines 45-46

event Voted(address indexed voter, uint256 tokenId, 
uint256 weight);
event Abstained(uint256 tokenId, uint256 weight);

These events should include the pool address. It’s also not clear to use why 
the indexation is inconsistent.

Line 88

modifier EpochManagerOrVoterAdmin() {

This new modifier appears unused, alongside other modifiers. Perhaps it was 
added for future-proofing.

Line 156

votes[_tokenId][_pool] -= _votes;

Consider simply setting this to zero to save gas.

Lines 159, 160, 238 and 239

IBribe(internal_bribe).withdraw(uint256(_votes), 
_tokenId);
IBribe(external_bribe).withdraw(uint256(_votes), 
_tokenId);
IBribe(internal_bribe).deposit(uint256(_poolWeight), 
_tokenId);
IBribe(external_bribe).deposit(uint256(_poolWeight), 
_tokenId);

Nearly all setters lack events and gas optimizations.

Line 255-256 (example)

totalWeight += _usedWeight;
epochTotalWeight[epochNext] = totalWeight;

VoterV3Page 80 of 127 Paladin Blockchain Security

https://paladinsec.co


The second line re-fetches values from storage even though they could’ve 
been stored in memory to save gas. This pattern occurs with all the check-
pointing logic added in this PR.

Recommendation Consider fixing the typographical issues.

Resolution

VoterV3Page 81 of 127 Paladin Blockchain Security

https://paladinsec.co


2.16 GaugeManager
GaugeManager is responsible for keeping track of all gauges which can be voted on to 
receive emissions. Anyone can create new gauges for pools which have been deployed by 
the official pair factories.

After gauge creation, the gauge and its related liquidity pool are stored and bribe contracts 

are created for them. Every epoch, the GaugeManager will distribute the weekly emissions 
to all registered gauges based on the votes each received relative to the others. This voting 

happens in VoterV3.

GaugeManager also defines some utility functions for users to claim rewards from multiple 
gauges and bribes all at once, instead of having to create a transaction for each of them.

GaugeManager has several highly intrusive setter functions which can replace core de-
pendencies such as the farmingParam, minter, voter and bribeFactory. Replacing 
these can and likely will lead to severe side-effects such as complete mis-accounting of 
emissions. Auditor confirmation is always recommended before adjusting any intrusive 
setters.

Within this code update, votes must be present for emissions to be distributed to gauges. 
This may create a deadlock in the minter if there are no votes yet and no one has tokens 
to vote. As long as users have tokens to vote, which is more realistic, it appears that in this 
scenario at least one week must pass before resolution. This scenario should be avoided by 
ensuring votes are always present.

2.16.1 Privileged Functions

• setBribeFactory [ GAUGE_ADMIN ]

• setVoter [ GAUGE_ADMIN ]

• setBlackGovernor [ GAUGE_ADMIN ]

• distributeFees [ GAUGE_ADMIN ]

• distributeAll [ GAUGE_ADMIN ]

• distributeRewards [ GAUGE_ADMIN ]

• distribute [ GAUGE_ADMIN ]

• setMinter [ GAUGE_ADMIN ]

GaugeManagerPage 82 of 127 Paladin Blockchain Security

https://paladinsec.co


• updateGaugeFactory [ GAUGE_ADMIN ]

• updateGaugeFactoryCL [ GAUGE_ADMIN ]

• updatePairFactory [ GAUGE_ADMIN ]

• updatePairFactoryCL [ GAUGE_ADMIN ]

• acceptAlgebraFeeChangeProposal [ GAUGE_ADMIN ]

• distributeFees [ EPOCH_MANAGER or GAUGE_ADMIN ]

• distribute [ EPOCH_MANAGER or GAUGE_ADMIN ]

• carryForwardTotalVotesForNextEpoch [ EPOCH_MANAGER or GAUGE_ADMIN ]

• carryForwardVotesForNextEpoch [ EPOCH_MANAGER or GAUGE_ADMIN ]

• killGauge [ GOVERNANCE ]

• reviveGauge [ GOVERNANCE ]

• setPermissionsRegistry [ owner ]

• setAlgebraPoolApiStorage [ owner ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

GaugeManagerPage 83 of 127 Paladin Blockchain Security

https://paladinsec.co


2.16.2 Issues & Recommendations

Issue #47 Gauge distribution amounts may still be inaccurate if a distribution is only 
done after a full epoch has elapsed

Severity

Description The behavior of gauge distributions has been significantly improved. 
Previously, there was a race condition where the total eligible amount of votes 

was considered to be the amount of votes when notifyRewardAmount was 
called, but then the vote amounts for distributing these rewards to the gauges 
were used as the vote amounts at the time this distribution was called.

Now, the mechanism has been improved to always use the last total vote 

count of the epoch before notifyRewardAmount was called, and the last 
vote counts of the epoch before the distribute functions are called.

This means that as long as both of these functions are called within the same 
epoch (7 days), the count is accurate.

This leaves the risk that if the gauge distribution does not occur for a full 
epoch, it will misassign rewards in the subsequent epoch.

Recommendation Consider always distributing to all gauges every epoch. Also consider adding 
default behavior which prevents distribution if a full epoch has elapsed. A new 
function with an explicit boolean to perform an incorrect manual distribution 
could be added to catch up.

Resolution
The client has not made changes to this behavior but is aware of 
this and will ensure that they are always timely called. The possibility 
therefore theoretically persists that they don’t, eg. if a week-long chain 
outage occurs.

GaugeManagerPage 84 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #48 Manual distributeRewards requires tokens to be manually sent to the Gauge-
Manager or else it will use the minter rewards which are supposed to be 
distributed to gauges

Severity

Description During the changes, a new manually callable distributeRewards 
functions was added. This function can only be called by the GAUGE_ADMIN. 
Its role is to let the team grant additional rewards to particular gauges in the 
ongoing epoch.

This function simply uses any tokens already present in the GaugeManager. 
By default, these are only the tokens minted to it for automatic distribution, 
and would thus be incorrectly assigned to these manual rewards.

The way to prevent this, which is likely what the team would do, is to 

manually send additional rewards into the GaugeManager before calling the 
distributeRewards function. This seems prone to error.

Recommendation Consider transferring the rewards via safeTransferFrom into the Gauge-
Manager at the top of the function, after the require statement.

Resolution

GaugeManagerPage 85 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #49 Factory update functions emit incorrect events

Severity

Description Lines 567-597

function updateGaugeFactory(address _gaugeFactory) 
external GaugeAdmin {
  require(_gaugeFactory != address(0), "ZA");
  require(_gaugeFactory.code.length > 0, "CODELEN");
  require(_gaugeFactory != gaugeFactory, "NA");
  gaugeFactory = _gaugeFactory;
  emit SetGaugeFactory(gaugeFactory, _gaugeFactory);
}

function updateGaugeFactoryCL(address _gaugeFactoryCL) 
external GaugeAdmin {
  require(_gaugeFactoryCL != address(0), "ZA");
  require(_gaugeFactoryCL.code.length > 0, "CODELEN");
  require(_gaugeFactoryCL != gaugeFactoryCL, "NA");
  gaugeFactoryCL = _gaugeFactoryCL;
  emit SetGaugeFactoryCL(gaugeFactoryCL, _gaugeFacto-
ryCL);
}

function updatePairFactory(address _pairFactory) 
external GaugeAdmin {
  require(_pairFactory != address(0), "ZA");
  require(_pairFactory.code.length > 0, "CODELEN");
  require(_pairFactory != pairFactory, "NA");
  pairFactory = _pairFactory;
  emit SetPairFactory(pairFactory, _pairFactory);
}

function updatePairFactoryCL(address _pairFactoryCL) 
external GaugeAdmin {
  require(_pairFactoryCL != address(0), "ZA");
  require(_pairFactoryCL.code.length > 0, "CODELEN");
  require(_pairFactoryCL != pairFactoryCL, "NA");
  pairFactoryCL = _pairFactoryCL;
  emit SetPairFactoryCL(pairFactoryCL, _pairFactoryCL);
}

The events emitted in the new factory update functions emit the same 
variable twice due to an ordering issue in the event emission.

GaugeManagerPage 86 of 127 Paladin Blockchain Security

https://paladinsec.co


The goal of the event is however to first emit the old value and subsequently 
emit the updated value.

Recommendation Consider moving the event to above the line which updates storage.

Resolution

Issue #50 Rewards directly sent to Algebra’s reward system will never be distributed

Severity

Description The Algebra reward system allows any address to invoke AlgebraEter-
nalFarming::addRewards. Due to the logic in notifyRewardAmount 
within the gauge manager, the reward rate will only ever be based on rewards 

distributed via the GaugeCL instance. Any funds sent via addRewards 
appear to be locked until the gauge ceases updating the reward rate.

Recommendation addRewards should be restricted such that it can only be called by the 
gauges.

Resolution

GaugeManagerPage 87 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #51 Once-per-epoch and authorization checks for distributeFees can be 
bypassed to some extent

Severity

Description The distributeFees functions include several checks: only authorized 
callers may invoke them, and they can execute claimFees only once per 
epoch.

These checks can be almost entirely bypassed (except for the portion that 
withdraws from the community vaults for CL gauges) by directly invoking 

claimFees on the gauges. This function lacks any authorization checks.

Recommendation Authorization checks should be added to claimFees if per-epoch claiming 
is required.

Resolution

Issue #52 Typographical issues and gas optimizations

Severity

Description Line 13

import './interfaces/IGaugeManager.sol';

Consider actually inheriting this such that the interface is guaranteed to be 
correct.

Line 20

import './interfaces/IBribe.sol';

This is already imported.

Line 26

import './libraries/Math.sol';

This library is unused and can be removed.

Line 27

import "@openzeppelin/contracts-upgradeable/token/ERC20-
/IERC20Upgradeable.sol";

IERC20 was already imported, we see no reason to import this as well as the 
interface is identical.

Lines 38 and 42

GaugeManagerPage 88 of 127 Paladin Blockchain Security

https://paladinsec.co


uint256 internal index;
mapping(address => uint256) internal supplyIndex;

Consider exposing a pendingEmissions function for these variables.

Line 39

address internal base;

This variable can be marked as public to allow inspection both off-chain 
and by other contracts.

Lines 43

mapping(address => uint256) public claimable; // gauge => 
claimable $the

This should say $NOVA instead.

Line 50

VoterFactoryLib.Data private _factoriesData;

This should have view functions as its currently an advanced structure without 
any introspection.

Lines 64-65

bytes32 public constant COMMUNITY_FEE_WITHDRAWER_ROLE = 
keccak256('COMMUNITY_FEE_WITHDRAWER');
bytes32 public constant COMMUNITY_FEE_VAULT_ADMINISTRAT-
OR = keccak256('COMMUNITY_FEE_VAULT_ADMINISTRATOR');

It’s unclear to us why these permissions from the community fee contract are 
also exposed here.

Line 88

permissionRegistry = _permissionRegistory;

This should say “registry”.

Lines 95, 100 and 105

modifier GaugeAdmin() {
modifier Governance() {
modifier EpochManagerOrGaugeAdmin() {

GaugeManagerPage 89 of 127 Paladin Blockchain Security

https://paladinsec.co


Consider using the naming convention which is snakeCase and starts like 
onlyGaugeAdmin.

Lines 132-133

/// @notice Set a new Minter
function setGenesisManager(address _genesisManager) 
external GaugeAdmin {

The comment above this function is wrong.

Line 165

uint poolLen = _pool.length;

This length is already used above this declaration. Consider declaring this at 
the top of the function and just using the local variable everywhere.

Line 177

function createGaugeWithBonusReward(address _pool, 
uint256 _gaugeType, address bonusRewardToken)

Consider removing the _gaugeType parameter as this is only supposed to 
be for the CL gauge. Alternative consider validating that the _gaugeType is 
not zero.

Line 185

/// @dev To create stable/Volatile pair gaugeType = 0, 
Concentrated liqudity = 1, ...

This should say “liquidity” instead.

Line 193

address bonusRewardToken = bonusRewardToken;

This seems rather redundant.

Line 225 and 261

if(_gaugeType == 1) {

Consider using else if instead.

Line 230

// approve spending for $the

GaugeManagerPage 90 of 127 Paladin Blockchain Security

https://paladinsec.co


This should say $NOVA instead.

Line 247

// todo: below line will go to ve33 rewarder.

Its unclear what this comment is about.

Line 273

bytes memory alphabet = "0123456789abcdef";

If desired, this can be marked as a constant bytes16 to save gas.

Line 295

/// @dev the function is called by the minter each epoch. 
Anyway anyone can top up some extra rewards.

We couldn’t find a way to top up extra rewards for the V2 gauges.

Lines 340-344

address communityVault = algebraPool.communityVault();
uint _balanceToken0 = IERC20(_token0).balanceOf(algebra-
Pool.communityVault());
...
uint _balanceToken1 = IERC20(_token1).balanceOf(algebra-
Pool.communityVault());

The communityVault variable should be re-used to save gas.

Line 371

/// @notice distribute reward onyl for given gauges

This should say “only” instead.

Line 417

/// @dev this function track the gauge index to emit the 
correct $the amount after the distribution

This should say “tracks” and $NOVA instead.

Line 426

// SupplyIndex will be updated for Killed Gauges as well 
so we don't need to udpate index while reviving gauge.

GaugeManagerPage 91 of 127 Paladin Blockchain Security

https://paladinsec.co


This should say “update” instead.

Line 462

claimable[_gauge] = 0;

It would be slightly more idiomatic to move this setter up a bit in line with ch-

ecks-effects-interactions. However, since NOVA has no external interactions, 
there is no impact.

Line 475

require(isGauge[_gauge], 'DEAD');

This error message is wrong.

Line 488

require(_gauge.code.length > 0, "CODELEN");

This check is unnecessary, as it’s preceded by an isGauge check.

It should also be noted that most setters do a codelength check, but some 
setters don’t have this making it rather inconsistent.

Finally, setVoter, setBlackGovernor and setAVM lack events. Some 
other functions lack events as well but they seem to still have downstream 
events.

Recommendation Consider fixing the typographical issues.

Resolution

GaugeManagerPage 92 of 127 Paladin Blockchain Security

https://paladinsec.co


2.17 GaugeFactory
GaugeFactory is the responsible for deploying new GaugeV2 contracts via its 
createGauge function, which can only be called by the configurable GaugeManager 
contract.

2.17.1 Privileged Functions

• createGauge [ gauge manager ]

• setRegistry [ owner ]

• activateEmergencyMode [ emergency council ]

• stopEmergencyMode [ emergency council ]

• setDistribution [ owner or GAUGE_ADMINs ]

• setGaugeManager [ owner or GAUGE_ADMINs ]

2.17.2 Issues & Recommendations

No issues found.

GaugeFactoryPage 93 of 127 Paladin Blockchain Security

https://paladinsec.co


2.18 GaugeV2
GaugeV2 is the main rewarder contract for all V2 (basic and stable) pairs (“LPs”) within the 
system. Every epoch, the GaugeManager forwards a number of emissions to each LP’s 
gauge that is proportional to the amount of voting escrow votes for the gauge.

These emissions are then distributed over the subsequent epoch to all LP stakers of the 
gauge, proportional to their portion of the total LP staked within the gauge.

Even though GaugeV2 is a fork of the established Thena gauge, some changes were made.

An emergency mode can be enabled by the owner that prevents further deposits into the 

gauge and only allows the calling of emergencyWithdraw. This should be taken into 
careful consideration by vaults and other contracts building on top of the contracts.

Finally, the claimFees function can be called by anyone, which claims the underlying 

swap fees on the staked LP tokens. These fees are subsequently fully sent to the in-
ternal_bribe contract as compensation to the voters who voted that this gauge should 
receive emissions.

All rewards will be distributed by the time the epoch is finished. This means that between the 
time the new epoch starts and its rewards are distributed, a brief period without any rewards 
will exist. This has been communicated and it was confirmed that new epoch emissions will 
be distributed quickly.

2.18.1 Privileged Functions

• setDistribution [ owner ]

• activateEmergencyMode [ owner ]

• stopEmergencyMode [ owner ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

GaugeV2Page 94 of 127 Paladin Blockchain Security

https://paladinsec.co


2.18.2 Issues & Recommendations

Issue #53 A small amount of rewardToken dust will accumulate in the gauge

Severity

Description The GaugeV2 contract does various operations within its reward distribution 
and notifyRewardAmount which can contain a small rounding error. This 
rounding error accumulates as a reward token balance within the gauge which 
cannot be withdrawn.

Recommendation Consider whether this is an issue. As long as the reward token has a small 
nominal value (a high number of decimals), the amount stuck within the gauge 
will be small enough to ignore.

Resolution
The client has confirmed that this dust will never amount to any real 
value for the tokens they add, no changes were made.

Issue #54 The GaugeV2 does not support various special ERC-20 tokens such as 
fee-on-transfer tokens

Severity

Description The deposit function in GaugeV2 does not support fee-on-transfer tokens as 
it assumes the full amount requested is received by the gauge. This limitation 
could result in some users being unable to withdraw their full balances if such 
tokens were used for staking. Additionally, other special ERC-20 tokens, such 
as rebasing tokens, are not directly supported by the gauge.

Regarding reward accumulation precision, the current 1e18 precision might 
cause issues for sub-tokens with extremely large or small supplies. However, 
this precision level is generally a reasonable trade-off and is commonly used.

This issue is rated informational rather than low severity, since the gauges are 
primarily intended for LP tokens, which typically do not exhibit these special 
behaviors.

Recommendation Consider whether there’s any plan to ever add such tokens to a gauge. If 
so- consider using a before-after pattern within the deposits to support 
fee-on-transfer tokens. If other types of fringe tokens need to be supported, 
consider discussing this with us as we can recommend solutions tailored to 
the specific token type.

Resolution
The client has indicated they will coordinate with the teams of the 
fee-on-transfer tokens to ensure that the SuperNova tokens are 

GaugeV2Page 95 of 127 Paladin Blockchain Security

https://paladinsec.co


whitelisted from the fee, before adding these tokens. No other special 
tokens will be added.

Issue #55 Typographical issues and gas optimizations

Severity

Description Line 15

interface IRewarder {

It’s considered best practice to keep interfaces in separate solidity files and 
actually inherit from them. Currently this interface is not directly inherited 

within the GaugeExtraRewarder, which could lead for the interface to no 
longer match if changes are made.

Line 27

address public internal_bribe;

The internal_bribe can now be marked as immutable.

Line 35 and 39

address public VE;

This variable appear unused internally, and can likely be removed unless they 
are used by a dependent contract.

Line 41 and 217

mapping(address => uint256) public maturityTime;
require(block.timestamp >= maturityTime[msg.sender], 
"!MATURE");

These sections are unused and can be removed.

Line 41 (old)

uint256 public DURATION;

This variable can be marked as immutable to save gas.

Lines 93, 111, 145 and 152

GaugeV2Page 96 of 127 Paladin Blockchain Security

https://paladinsec.co


require(emergency == false, "EMER");
emergency = false;
require(emergency == false, "EMER");
equire(emergency == true,"EMER");

These statements are unnecessarily verbose. For example require(emer-
gency == true) can be reduced to require(emergency). The setter 
to false appears unnecessary as the variable is already false at the time of 
deployment. Finally, require(emergency == false) can be simplified 
to require(!emergency).

Line 272

function _withdraw(uint256 amount) internal nonReentrant 
isNotEmergency updateReward(msg.sender) {

This function is slightly inconsistent with _deposit, which defines an 
account address. Consider being consistent and either using msg.sender 
in both or in neither.

Line 274

require(_balanceOf(msg.sender) > 0, "ZV");

This check can be strengthened to _balanceOf(msg.sender) >= 
amount if desired. In its current state its a rather wasteful operation from 
a gas perspective without serving much purpose.

Line 334

function getReward(address _user) public nonReentrant 
onlyDistribution updateReward(_user) {

getReward can be marked as external as its not used internally.

Line 384

rewardToken.safeTransferFrom(DISTRIBUTION, address(this-
), reward);

The origin of this transfer can be msg.sender to save a small amount of gas. 
This has the additional benefit that code reviewers will be more confident that 
this function cannot drain approvals without consent.

Line 399

require(rewardRate <= balance / DURATION, "REWARD_HIGH");

GaugeV2Page 97 of 127 Paladin Blockchain Security

https://paladinsec.co


The comments above this line explaining it appear outdated, as the situation 
they explain is protected against with this requirement still appears possible. 

We assume that it’s from a time where there wasn’t a transferFrom within 
the function. Furthermore, this check is insufficient as an actual sanity check 

given that balance also incorporates user balances for an insufficient token 
balance.

Line 415

address _token = address(TOKEN);

It’s unclear why this is cast back to address, given that within all uses this 
_token gets cast back to IPair.

Line 419-420

uint256 _fees0 = claimed0;
uint256 _fees1 = claimed1;

These variables appear unnecessary as claimed0 and claimed1 can just 
be used directly.

Lines 147 and 155

emit EmergencyActivated(address(this), block.timestamp-
);
emit EmergencyDeactivated(address(this), block.-
timestamp);

The arguments of these events are redundant with off-chain metadata always 
attached to events.

Finally, setDistribution, setGaugeRewarder, setInternalBribe, 
setGenesisPool and setGenesisPoolManager lack events.

Recommendation Consider fixing the typographical issues and gas optimizations.

Resolution

GaugeV2Page 98 of 127 Paladin Blockchain Security

https://paladinsec.co


2.19 GaugeFactoryCL
GaugeFactoryCL is the contract responsible for deploying GaugeCL instances and is used 
by the GaugeManager to do so. When creating a gauge, the eternal farming virtual pool 
is also automatically created, which is the actual staking contract for the pool. Due to the 
farming plugin that is supposed to be connected on the underlying CL pools, the eternal 
farming system will be notified of any position changes.

2.19.1 Privileged Functions

• activateEmergencyMode [ emergency council ]

• stopEmeregencyMode [ emergency council ]

• setDibs [ owner or GAUGE_ADMIN ]

• setReferralFee [ owner or GAUGE_ADMIN ]

• setGaugeManager [ owner or GAUGE_ADMIN ]

• setRegistry [ owner ]

• setAlgebraPoolApi [ owner ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

GaugeFactoryCLPage 99 of 127 Paladin Blockchain Security

https://paladinsec.co


2.19.2 Issues & Recommendations

Issue #56 Typographical issues

Severity

Description Lines 19 and 25

interface IGaugeCL {
interface ICustomPoolDeployer {

It is recommended to move these interfaces to a separate file, as this follows 
best practice for modularity and maintainability. Additionally, consider 
having the actual contract implementations explicitly inherit their corre-
sponding interfaces. This ensures that the contracts fully comply with the 
declared interface specifications and helps catch discrepancies during com-
pilation.

Line 47

dibsPercentage = 0;

This appears unnecessary. Though it is no problem either.

Lines 56 and 61

require(owner() == msg.sender, 'not owner');

Consider simply marking the function as onlyOwner instead, as is common 
practice.

Line 72

return last_gauge;

This value is unnecessarily fetched from storage.

Finally, all of the setters lack events.

Recommendation Consider fixing the typographical issues.

Resolution

GaugeFactoryCLPage 100 of 127 Paladin Blockchain Security

https://paladinsec.co


2.20 GaugeCL
GaugeCL is a contract similar to GaugeV2. However, unlike GaugeV2, it simply acts as an 
interface into Algebra’s farming mechanism. Users are still free to fully bypass this gauge 

and directly interact with Algebra’s FarmingCenter.

According to the team, GaugeCL mainly exists as a compatible interface with the other 
gauges, allowing dependency systems to easily interact with multiple types of gauges 
without having to learn about how Algebra's special farming system works. It is also useful 
for the emissions voting system, which can provide emissions to gauges in a unified manner.

GaugeCL is set as the communityFeeReceiver with the community fee set to 100%, 
allowing the fees to be routed to the bribes.

The fee percentages in this contract are set to a denominator of 1_000, which is different 
from the denominator of 10_000 used within the normal V2 pools. Care should be taken 
with this difference.

2.20.1 Privileged Functions

• activateEmergencyMode

• stopEmergencyMode

• transferOwnership

• renounceOwnership

GaugeCLPage 101 of 127 Paladin Blockchain Security

https://paladinsec.co


2.20.2 Issues & Recommendations

Issue #57 Unstaked LP positions do not earn trading fees

Severity

Description Within the V2 pools, the trading fees accrued by the tokens staked in the 

gauge are distributed to the veNOVA voters of those pools. However, the 
fees for swaps of LP tokens which are not staked into the gauge, still go the 
liquidity provider who owns the LP tokens.

This is very different with the GaugeCL and the SuperNova concentrated 
liquidity pools in general. For these pools, the fees always go to the voters, 
regardless of whether the LP that generated them is staked into the gauge or 
not.

This is because within the SuperNova design, the fees are distributed through 

the communityFee which is set to 100%. This means that all fees are 
essentially taken as a protocol fee, and then sent to the GaugeCL via the 
CommunityVault.

Recommendation As this seems desired behavior, consider clearly documenting this as the 

frontend still currently has a section Trading Fees for the unstaked con-
centrated liquidity positions which simply appears to remain zero.

Resolution
This is desired behavior.

GaugeCLPage 102 of 127 Paladin Blockchain Security

https://paladinsec.co


2.21 BribeFactoryV3
BribeFactoryV3 is responsible for deploying the Bribe contract instances for each 
gauge. During gauge creation within the GaugeManager, the bribe factory will be called 
to deploy the internal and external bribes for the gauge.

BribeFactoryV3 also has some governance functionality to perform administrative tasks 
on the bribes, such as draining their reward tokens.

2.21.1 Privileged Functions

• createBribe [ gaugeManager or owner ]

• setVoter [ owner ]

• setPermissionsRegistry [ owner ]

• setTokenHandler [ owner ]

• setBribeVoter [ owner ]

• setBribeMinter [ owner ]

• setBribeOwner [ owner ]

• recoverERC20From [ owner ]

• recoverERC20AndUpdateData [ owner ]

• transferOwnership

• renounceOwnership

BribeFactoryV3Page 103 of 127 Paladin Blockchain Security

https://paladinsec.co


2.21.2 Issues & Recommendations

Issue #58 Typographical issues

Severity

Description Line 21

address[] internal _bribes;

This array should likely be marked as public for inspection purposes, 
alongside a length function.

Line 25

address[] public defaultRewardToken;

This array appears fully unused.

Lines 65-66

_bribes.push(last_bribe);
return last_bribe;

The local lastBribe variable can be used instead to save gas.

Lines 100 and 108

/// @notice set the bribe factory permission registry

This comment is incorrectly copy-pasted and does not actually describe the 
function in question.

—

Several functions lack events, though many of the underlying functions still 
emit events.

Recommendation Consider fixing the typographical issues.

Resolution

BribeFactoryV3Page 104 of 127 Paladin Blockchain Security

https://paladinsec.co


2.22 Bribe
The Bribe contract is linked twice to each gauge within the SuperNova system: an internal 
bribe and an external bribe. When voters vote for the gauge through VoterV3, the two 
bribes of that gauge are notified of the vote.

At the end of each epoch, voters can then claim any rewards which have accumulated within 

the Bribe contract. For the internal bribe, this is always the swap fees that were generated 
(all swap fees for CL pools and specifically the swap fees of the tokens staked in the gauge 
for the V2 pools), while for the external bribe this is any bribes which protocol bribes send 
into that contract. This allows token owners to persuade voters to vote on their protocol's 
token's pools by adding additional incentive alongside the swap fees for voting on that pool.

Similar to most of the other reward distributors, rewards can become stuck if no one actually 

stakes into the distributor (Bribe, Gauge, etc.). If the total number of stakers is zero, 
rewards remain permanently unclaimed as the only fallback mechanism is the owner of the 
Bribe taking them out.

Even though bribe tokens may be added over time, they can never be removed again. This 
appears to be by design.

2.22.1 Privileged Functions

• recoverERC20AndUpdateData [ owner or bribeFactory ]

• emergencyRecoverERC20 [ owner or bribeFactory ]

• setVoter [ owner or bribeFactory ]

• setGaugeManager [ owner or bribeFactory ]

• setMinter [ owner or bribeFactory ]

• setOwner [ owner or bribeFactory ]

BribePage 105 of 127 Paladin Blockchain Security

https://paladinsec.co


2.22.2 Issues & Recommendations

Issue #59 Bribe reward claiming will erroneously send the reward to the AVM instead 
of the actual NFT owner if the NFT is owned by the AVM

Severity

Description Lines 266-271

function getReward(uint256 tokenId, address[] memory 
tokens) external nonReentrant {
  address _owner = IVotingEscrow(ve).ownerOf(tokenId);
  if(IAutoVotingEscrowManager(avm).tokenIdToAVMId(token-
Id) > 0) {
    uint idx = IAutoVotingEscrowManager(avm).tokenIdToA-
VMId(tokenId)-1;
    IAutoVotingEscrow[] memory avmList = IAutoVotingEsc-
rowManager(avm).getAVMs();
    _owner = address(avmList[idx]);

The getReward function has a special exception that allows for claiming 
rewards for NFTs which are owned by the auto-voting mechanism. In this 
special exception, the rewards should be sent to the original NFT owner, and 
not the AVM which currently owns the NFT.

However, due to an error in the refactoring of this exception logic, the reward 
is still sent to the auto voting contract instead of to the owner.

Recommendation We do not believe there is any need to figure out the original AVM contract. 
Instead, it is sufficient to call the following on the global AVM after confirming 

that the token is owned via the tokenIdToAvmId(tokenId) > 0 check.
_owner = IAutoVotingEscrowManager(avm).getOriginalOwner-
(tokenId);

Resolution
AVMs have been fully removed.

BribePage 106 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #60 Tokens with a fee on transfer are not supported as bribe rewards

Severity

Description The notifyRewardAmount function will operate incorrectly and add too 
many rewards compared to what the contract receives if the token has a fee 
on transfer.

Recommendation Consider whether this is an issue; if not, consider documenting that tokens 
with a fee on transfer should whitelist the bribe and all other contracts (as 
most of the codebase does not support these tokens).

If it is an issue, consider using a before-after pattern.

Resolution
The client has indicated they will coordinate with the teams of these 
tokens to ensure that the SuperNova tokens are whitelisted from the 
fee, before adding these tokens.

Issue #61 The contract does not support a ve token with a supply larger than 2**128

Severity

Description Line 238 (example)

votingSupplyPlots[nPlots - 1] = VotingSupplyPlot(uint128-
(totalSupply), ts);

Throughout the contract, the total amount of votes is cast down to uint128. 
This will cause the contract to break if this variable is ever exceeded.

This issue is raised informationally as many other contracts break once a 
token has a supply higher than 128 bits. Furthermore, the SuperNova token 
currently has a supply significantly lower than this number.

Recommendation Consider using a larger type for the token values. Given that this contract is 
deployed on a cheap network we recommend using a full uint256 for both 
the timestamp and the token balances.

Resolution
The client has indicated they will not have such a token.

BribePage 107 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #62 Contract does not support reward tokens with a very high supply

Severity

Description Line 122

reward += (cp0.balanceOf * tokenRewardsPerEpoch[_reward-
Token][_currTs]) / _supply;

This line of code may fail due to overflow if the reward is very high. This 
appears rather unlikely to us as not many such tokens exist.

Recommendation Consider failing early on notifyRewardAmount instead, this avoids the 
unhappy realisation that a bribe is not claimable.

Resolution

Issue #63 Typographical issues

Severity

Description Line 112

uint256 _currTs = BlackTimeLibrary.epochStart(lastEarn[-
_rewardToken][tokenId]);

Since the lastEarn now always appears to be aligned to the epochStart, 
this extra operation seems unnecessary.

Recommendation Consider fixing the typographical issues.

Resolution

BribePage 108 of 127 Paladin Blockchain Security

https://paladinsec.co


2.23 CustomPoolDeployer
CustomPoolDeployer is responsible for deploying new Algebra pools within the 
SuperNova system. Only pools deployed by it will be supported within the SuperNova 
system. If pools are created directly without using this deployer, they should not be listed 
on the SuperNova website, nor be used for gauge rewards.

CustomPoolDeployer is upgradeable, meaning that the proxy owner can fully change its 
functionality. the proxy admin should be safeguarded extremely carefully, ideally behind a 
secure multi-signature wallet consisting of trusted, independent parties.

2.23.1 Privileged Functions

• createCustomPool [ owner or authorizedAccounts ]

• setPluginForPool [ owner or authorizedAccounts ]

• setPlugin [ owner or authorizedAccounts ]

• setPluginConfig [ owner or authorizedAccounts ]

• setFee [ owner or authorizedAccounts ]

• setCommunityFee [ owner or authorizedAccounts ]

• setAlgebraFeeRecipient [ owner ]

• setAlgebraFeeManager [ owner ]

• setAlgebraFeeShare [ owner ]

• setAlgebraFarmingProxyPluginFactory [ owner ]

• setAlgebraFactory [ owner ]

• setAlgebraPluginFactory [ owner ]

• addAuthorizedAccount [ owner ]

• removeAuthorizedAccount [ owner ]

• transferOwnership [ owner ]

• renounceOwnership [ owner ]

CustomPoolDeployerPage 109 of 127 Paladin Blockchain Security

https://paladinsec.co


2.23.2 Issues & Recommendations

No issues found.

CustomPoolDeployerPage 110 of 127 Paladin Blockchain Security

https://paladinsec.co


2.24 PermissionsRegistry
PermissionsRegistry is the main role-based access-control contract for the system. 
It defines many of the governance roles and allows for the team to assign these roles 
to accounts. These accounts can then call various governance functions throughout the 
system.

2.24.1 Privileged Functions

• addRole [ blackMultisig ]

• removeRole [ blackMultisig ]

• setRoleFor [ blackMultisig ]

• removeRoleFrom [ blackMultisig ]

• setEmergencyCouncil [ blackMultisig or emergencyCouncil ]

• setBlackTeamMultisig [ blackTeamMultisig ]

• setBlackMultisig [ blackMultisig ]

2.24.2 Issues & Recommendations

No issues found.

PermissionsRegistryPage 111 of 127 Paladin Blockchain Security

https://paladinsec.co


2.25 TokenHandler
TokenHandler is a central registry which keeps track of whitelisted tokens, veNFT ids and 
whitelisted connector tokens. It also keep track of various other things. Small changes to 
the governance roles were made.

2.25.1 Privileged Functions

• whitelistTokens [ GOVERNANCE ]

• whitelistToken [ GOVERNANCE ]

• blacklistTokens [ GOVERNANCE ]

• blackListToken [ GOVERNANCE ]

• whitelistNFT [ GOVERNANCE ]

• blacklistNFT [ GOVERNANCE ]

• whitelistConnectors [ GOVERNANCE ]

• whitelistConnector [ GOVERNANCE ]

• blacklistConnector [ GOVERNANCE ]

• setBucketType [ GOVERNANCE ]

• updateTokenVolatilityBucket [ GOVERNANCE ]

• setPermissionsRegistry [ OWNER ]

• transferOwnership [ OWNER ]

• renounceOwnership [ OWNER ]

2.25.2 Issues & Recommendations

No issues found.

TokenHandlerPage 112 of 127 Paladin Blockchain Security

https://paladinsec.co


2.26 BlackTimeLibrary
BlackTimeLibrary is a simple shared utility used by several contracts.

The current epoch length is set to 7 days and is aligned to UNIX timestamps.

The only changes were the removal of various functions. No issues were found with this 
removal.

2.26.1 Privileged Functions

None.

2.26.2 Issues & Recommendations

No issues found.

BlackTimeLibraryPage 113 of 127 Paladin Blockchain Security

https://paladinsec.co


2.27 BlackholePairAPIV2
BlackholePairAPIV2 is a utility contract used for the frontend. It provides several utility 
functions to display information to the frontend.

The only changes to this contract were removals of functionality that are no longer present. 
No issues were found with these removals.

2.27.1 Privileged Functions

• setOwner

• setVoter

• setGaugeManager

• setAlgebraFactory

• setQuoterV2

• setAlgebraPoolAPI

• setPairFactory

2.27.2 Issues & Recommendations

No issues found.

BlackholePairAPIV2Page 114 of 127 Paladin Blockchain Security

https://paladinsec.co


2.28 veNFTAPI
veNFTAPI is a utility contract used for the frontend. It provides several utility functions to 
display information to the frontend.

The final version of this contract where the AVM was already removed was audited, which 
is a later version compared to the initial commit from the preliminary commit.

2.28.1 Privileged Functions

• setOwner

• setVoter

• setGaugeManager

• setGaugeFactory

• setGaugeFactoryCL

• setRewardDistro

• setPairAPI

• setPairFactory

veNFTAPIPage 115 of 127 Paladin Blockchain Security

https://paladinsec.co


2.28.2 Issues & Recommendations

Issue #64 Typographical issues

Severity

Description hasVotedForEpoch may not always be set to true — e.g., for poke it will 
not be. Also, it will be set to true if vote is called with an empty array or with 
amounts rounding to zero. In this case no real voting occurs but it still gets 
set to zero. It is not necessary to fix this as this is a frontend contract.

—

setGaugeFactoryCL lacks an event. All unchanged setters lack one as 
well.

Recommendation Consider fixing the typographical issues.

Resolution

veNFTAPIPage 116 of 127 Paladin Blockchain Security

https://paladinsec.co


2.29 Math
The Math library provides the min, max and sqrt functions which are used by various 
contracts. The min and max functions are trivially correct, while the sqrt function is a 
direct port of the Uniswap V2 sqrt math function, with the most notable change being 
that it is now defined in 0.8 meaning that any overflow or divisions are now checked for 
overflow and division by zero, consuming slightly more gas.

The library also defines cbrt but this function is fully unused.

We recommend users of this library to keep the rounding behavior in mind for these two 
root functions.

2.29.1 Privileged Functions

None.

2.29.2 Issues & Recommendations

No issues found.

MathPage 117 of 127 Paladin Blockchain Security

https://paladinsec.co


2.30 AlgebraVaultFactory
The standard AlgebraVaultFactoryStub is replaced with a custom factory. The original 
factory simply returns the same community vault for all newly deployed pools. Due to the 
way SuperNova works, the team wants to have individual vaults for each pair. This allows 
them to accurately track fees and send them to the gauges.

2.30.1 Privileged Functions

• setOwner

2.30.2 Issues & Recommendations

No issues found.

AlgebraVaultFactoryPage 118 of 127 Paladin Blockchain Security

https://paladinsec.co


2.31 CustomPluginV1Factory and Custo-
mPluginV2Factory

The client has extended the V1 and V2 plugin factories of Algebra with a simple extension 
contract that allows for deploying a plugin to existing pools. This was needed to easily 
retrofit the existing Algebra plugins and their factories in the custom deployer of the client.

2.31.1 Privileged Functions

• createPluginForExistingCustomPool [ customPoolDeployer or POOLS_A-
DMINISTRATION_ROLE ]

• (base privileged functions)

CustomPluginV1Factory and CustomPluginV2FactoryPage 119 of 127 Paladin Blockchain Security

https://paladinsec.co


2.31.2 Issues & Recommendations

Issue #65 Typographical issues

Severity

Description Line 15

require(msg.sender == customPoolDeployer || factory.-
hasRoleOrOwner(factory.POOLS_ADMINISTRATOR_ROLE(), msg.-
sender), 'Only deployer or admin');

Consider storing the role as a constant instead.

Recommendation Consider fixing the typographical issues.

Resolution

CustomPluginV1Factory and CustomPluginV2FactoryPage 120 of 127 Paladin Blockchain Security

https://paladinsec.co


2.32 AlgebraBasePluginV3
The AlgebraBasePluginV3 is a slight rewrite of the AlgebraBasePluginV1-
, integrating the SecurityPlugin. It hooks into the security plugin for swaps, flashloans, 
liquidity additions and liquidity removals. This allows for the team to disable all of these 
four actions, or only allow for liquidity removals.

2.32.1 Privileged Functions

• setSecurityRegistry [ plugin factory or ALGEBRA_BASE_PLUGIN_MANAGER 
]

• changeFeeConfiguration [ ALGEBRA_BASE_PLUGIN_MANAGER ]

AlgebraBasePluginV3Page 121 of 127 Paladin Blockchain Security

https://paladinsec.co


2.32.2 Issues & Recommendations

Issue #66 Fee collection cannot be paused

Severity

Description Many of the user-callable pool functions can now be paused in emergencies 

by the team through the integration of the SecurityPlugin. However, no 
such pausing is possible for fee claiming by users.

If the team wishes to fully disable pools including fee claiming, this is not 
possible.

Recommendation Consider also preventing fee claiming when the pool status is set to 

DISABLED.

Resolution
The team has indicated that fee claiming is a low risk path. Fur-
thermore, they have indicated that they’d rather not make intrusive 
changes to Algebra, which would be required here. We agree with them 
that this would indeed require an intrusive change and understand that 
that is not desired.

AlgebraBasePluginV3Page 122 of 127 Paladin Blockchain Security

https://paladinsec.co


2.33 BasePluginV3Factory
The BasePluginV3Factory is a modified version of the BasePluginV1Factory 
allowing for the configuration of a SecurityRegistry alongside with a new function to 
deploy plugins for existing pools.

The plugins can be deployed by and for any pool deployer, but only for their own pools.

2.33.1 Privileged Functions

• setDefaultFeeConfiguration [ ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTR-
ATOR ]

• setFarmingAddress [ ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTRATOR ]

• setSecurityRegistry [ ALGEBRA_BASE_PLUGIN_FACTORY_ADMINISTRATOR ]

2.33.2 Issues & Recommendations

No issues found.

BasePluginV3FactoryPage 123 of 127 Paladin Blockchain Security

https://paladinsec.co


2.34 SecurityPlugin
The SecurityPlugin is an Algebra plugin written by the Algebra team in their 
safety-switch extension. It was added to this scope during the resolution rounds of this audit 
to increase the security of the Algebra stack, allowing the team to pause swaps, liquidity 
addition and liquidity removal.

The plugin exposes two important internal functions to the main plugin, namely _check-
Status() and _checkStatusOnBurn(). The first check will revert if the configured Se-
curityRegistry has the pool status set to anything other than ENABLED. The secondary 
check will still succeed even if the status is set to BURN_ONLY.

The SecurityPlugin can therefore not be used by itself and should be integrated in a 
larger parent plugin, in this case the AlgebraBasePluginV3.

2.34.1 Privileged Functions

• setSecurityRegistry [ plugin factory or ALGEBRA_BASE_PLUGIN_MANAGER 
]

2.34.2 Issues & Recommendations

No issues found.

SecurityPluginPage 124 of 127 Paladin Blockchain Security

https://paladinsec.co


2.35 SecurityRegistry
The SecurityRegistry is the central registry for consulting the pool status used by all 
the SecurityPlugins. The algebra factory owner can disable all pools at once by setting 
the global status to DISABLED or set all pools to BURN_ONLY at once, which only allows 
for liquidity removal.

Individual pools can still be overwritten to DISABLED or BURN_ONLY via the set-
PoolsStatuses function. These overwritten statuses will only be used if the global status 
is set to ENABLED. This means that as soon as the global status changes from ENABLED, all 
individual overwritten statuses are ignored.

2.35.1 Privileged Functions

• setPoolsStatuses [ owner for ENABLED and BURN_ONLY, GUARD for 
DISABLED ]

• setGlobalStatus [ owner for ENABLED and BURN_ONLY, GUARD for DISABLED 
]

SecurityRegistryPage 125 of 127 Paladin Blockchain Security

https://paladinsec.co


2.35.2 Issues & Recommendations

Issue #67 setPoolsStatus can be called by anyone if an empty pools array is provided, 
increasing the contract’s attack surface

Severity

Description The access control within the setPoolsStatus triggers on each iteration 
over the pools array provided into the function.

This means that if an empty pools array is provided, no access control 
occurs and anyone can call the setPoolsStatus function with such a 
parameter. The newStatuses parameter can still be non-zero length.

This issue is raised as informational since no state changes are expected 

to occur when a malicious actor calls this function with an empty pools 
array. However, it needlessly increases the attack surface of the contract. If 
a compiler issue ever gets discovered in solidity, leaving functions like this 
open increases the risk that this contract can be affected by it, especially 

since attackers can still choose newStatuses freely.

Recommendation Consider revamping _hasAccess to exactly check the authorization once, 
based on the maximum privilege required by the newStatuses array. Make 
sure that both arrays are enforced to be equal length as well. It could finally be 

considered to allow the owner to also be able to set the status to DISABLED, 
as right now this is only permitted if they have the GUARD role.

Resolution
Given that this code is forked the client understandably wishes to keep 
it unchanged.

SecurityRegistryPage 126 of 127 Paladin Blockchain Security

https://paladinsec.co


Issue #68 Typographical issues

Severity

Description Line 15

EnumerableSet.AddressSet private overriddenPools;

This enumerable set lacks view functions. This prevents other contracts from 
using this data. As this set may only serve an internal purpose, keeping it 
private may also be desired.

Lines 51-52

bool _isPoolStatusOverrided = isPoolStatusOverrided;
if (_isPoolStatusOverrided) {

It’s unclear to us why this exception case is added as it does not seem to 
save significant gas. The shortcut it makes still requires a read from storage 
and the outcome it leads to seems identical to the outcome without such an 
exception case. We are also unsure why the storage variable gets cached into 

_isPoolStatusOverrided even though it’s only used once on the next 
line.

Recommendation Consider fixing the typographical issues.

Resolution
Given that this code is forked the client understandably wishes to keep 
it unchanged.

SecurityRegistryPage 127 of 127 Paladin Blockchain Security

https://paladinsec.co

